ترغب بنشر مسار تعليمي؟ اضغط هنا

Status and perspectives of sin2alpha measurements

50   0   0.0 ( 0 )
 نشر من قبل Hiroyuki Sagawa
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English
 تأليف H.Sagawa




اسأل ChatGPT حول البحث

In the neutral B meson system, it is possible to measure the CKM angle alpha using the decay mode b -> u ubar d in the presence of pollution from gluonic b -> d penguin decays. Here the recent status of the measurements of CP-violating asymmetry parameters using time-dependent analyses in B -> pi+pi- and B -> rho pi decays and the perspectives of a sin2alpha measurement are presented.



قيم البحث

اقرأ أيضاً

63 - Giuliana Galati 2015
OPERA is a long-baseline experiment at the Gran Sasso laboratory (LNGS) designed to search for $ u_mu rightarrow u_tau$ oscillations in appearance mode. OPERA took data from 2008 to 2012 with the CNGS neutrino beam from CERN. The data analysis is on going, with the goal of establishing $ u_tau$ appearance with high significance and improving the sensitivity to the sterile neutrino search in the $ u_mu$ $rightarrow$ $ u_e$ appearance channel. Current results will be presented and perspectives discussed.
160 - Elisabetta Prencipe 2014
The Facility for Antiproton and Ion Research (FAIR) is an international accelerator facility which will use antiprotons and ions to perform research in the fields of nuclear, hadron and particle physics, atomic and anti-matter physics, high density p lasma physics and applications in condensed matter physics, biology and the bio-medical sciences. It is located at Darmstadt (Germany) and it is under construction. Among all projects in development at FAIR in this moment, this report focuses on the $bar PANDA$ experiment (antiProton ANnihilation at DArmstadt). Some topics from the Charm and Charmonium physics program of the $bar PANDA$ experiment will be highlighted, where $bar PANDA$ is expected to provide first measurements and original contributions, such as the measurement of the width of very narrow states and the measurements of high spin particles, nowaday undetected. The technique to measure the width of these very narrow states will be presented, and a general overview of the machine is provided.
The GRANIT project is the follow-up of the pioneering experiments that first observed the quantum states of neutrons trapped in the earths gravitational field at the Institute Laue Langevin (ILL). Due to the weakness of the gravitational force, these quantum states exhibit most unusual properties: peV energies and spatial extensions of order 10 $mu$m. Whereas the first series of observations aimed at measuring the properties of the wave functions, the GRANIT experiment will induce resonant transitions between states thus accessing to spectroscopic measurements. After a brief reminder of achieved results, the principle and the status of the experiment, presently under commissioning at the ILL, will be given. In the second part, we will discuss the potential of GRANIT to search for new physics, in particular to a modified Newton law in the micrometer range.
114 - G. Cantatore 2008
We sketch the proposal for a PVLAS-Phase II experiment. The main physics goal is to achieve the first direct observation of non-linear effects in electromagnetism predicted by QED and the measurement of the photon-photon scattering cross section at l ow energies (1-2 eV). Physical processes such as ALP and MCP production in a magnetic field could also be accessible if sensitive enough operation is reached. The short term experimental strategy is to compact as much as possible the dimensions of the apparatus in order to bring noise sources under control and to attain a sufficient sensitivity. We will also briefly mention future pespectives, such as a scheme to implement the resonant regeneration principle for the detection of ALPs.
Knowledge on nuclear cluster physics has increased considerably as nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. The occurrence of exotic s hapes in light N=Z alpha-like nuclei and the evolution of clustering from stability to the drip-lines are being investigated more and more accurately both theoretically and experimentally. Experimental progresses in understanding these questions were recently examined and will be further revisited in this introductory talk: clustering aspects are, in particular, discussed for light exotic nuclei with a large neutron excess such as neutron-rich Oxygen isotopes with their complete spectrocopy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا