ﻻ يوجد ملخص باللغة العربية
We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer ($Q^2$ = 0.27 -- 1.3 (GeV/c)$^2$) and final hadronic state mass in the nucleon resonance region ($W$ = 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target ($^{15}$ND$_3$) and detected the scattered electrons with the CEBAF Large Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal double spin asymmetry $A_{||}$ and the spin structure function $g_1^d$. Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function $g_1^d$ and study its approach to both the deep inelastic limit at large $Q^2$ and to the Gerasimov-Drell-Hearn sum rule at the real photon limit ($Q^2 to 0$). We find that the first moment varies rapidly in the $Q^2$ range of our experiment and crosses zero at $Q^2$ between 0.5 and 0.8 (GeV/c)$^2$, indicating the importance of the $Delta$ resonance at these momentum transfers.
The Ayy data for deuteron inclusive breakup off hydrogen and carbon at a deuteron momentum of 9.0 GeV/c and large Pt of emitted protons are presented. The large values of Ayy independent of the target mass reflect the sensitivity of the data to the d
Precise measurements of the spin structure functions of the proton $g_1^p(x,Q^2)$ and deuteron $g_1^d(x,Q^2)$ are presented over the kinematic range $0.0041 leq x leq 0.9$ and $0.18 $ GeV$^2$ $leq Q^2 leq 20$ GeV$^2$. The data were collected at the H
We report on measurements of the neutron spin asymmetries $A_{1,2}^n$ and polarized structure functions $g_{1,2}^n$ at three kinematics in the deep inelastic region, with $x=0.33$, 0.47 and 0.60 and $Q^2=2.7$, 3.5 and 4.8 (GeV/c)$^2$, respectively. T
We establish the relationship between distribution and fragmentation functions and the structure functions appearing in the cross section of polarized 1-particle inclusive deep-inelastic scattering. We present spectator model evaluations of these str
New measurements of the reduced cross section $sigma_r^{D(3)}$ for the diffractive process $ep to eXY$ in the kinematic domain $12 leq Q^2 leq 90$ GeV$^2$, $0.01 leq beta leq 0.65$ and $xpom<0.1$ are presented. Data events recorded by the H1 detector