ترغب بنشر مسار تعليمي؟ اضغط هنا

A First Measurement of the Tensor-Polarized Structure Function b1d

110   0   0.0 ( 0 )
 نشر من قبل Contalbrigo Marco
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English
 تأليف Marco Contalbrigo




اسأل ChatGPT حول البحث

The Hermes experiment studies the spin structure of the nucleon using the 27.6 GeV longitudinally polarized positron beam of HERA and an internal target of pure gases. In addition to the well-known spin structure function g_1, measured precisely with longitudinally polarized proton and deuteron targets, the use of a tensor-polarized deuteron target provides access to the tensor polarized structure function b1d. The latter, measured with an unpolarized beam, quantifies the dependence of the parton momentum distribution on the nucleon spin. Hermes had a 1-month dedicated run with a tensor polarized deuterium target during the 2000 data taking period. Here preliminary results on the tensor-polarized structure function b1d are presented for the kinematic range 0.002<x<0.85 and 0.1<Q^2<20 GeV^2.



قيم البحث

اقرأ أيضاً

There are polarized structure functions $b_{1-4}$ for the spin-1 deuteron. We calculated the leading-twist tensor structure function $b_1$ by using convolution description for the deuteron. We found large differences between our theoretical functions and HERMES experimental data on $b_1$. Although higher-twist effects should be considered in obtaining experimental $b_1$, it suggests a possible existence of new hadron physics mechanism for spin-1 hadrons. Furthermore, we found that there are significant distributions at large Bjorken $x$. In future, an experimental measurement is planned at JLab for $b_1$ and there is a possibility of a proton-deuteron Drell-Yan experiment at Fermilab with the tensor-polarized deuteron, so that further theoretical studies are needed for clarifying the physics origin of tensor structure in terms of quark and gluon degrees of freedom.
78 - A. Gabrieli 1997
We compute the structure function $g_2$ for a gluon target in perturbative QCD at order $as$. We show that its first moment vanishes, as predicted by the Burkhardt-Cottingham sum rule.
A new structure function analysis of CCFR deep inelastic nu-N and nubar-N scattering data is presented for previously unexplored kinematic regions down to Bjorken x=0.0045 and Q^2=0.3 GeV^2. Comparisons to charged lepton scattering data from NMC and E665 experiments are made and the behavior of the structure function F2_nu is studied in the limit Q^2 -> 0.
A measurement of the virtual-photon asymmetry A_2(x,Q^2) and of the spin-structure function g_2(x,Q^2) of the proton are presented for the kinematic range 0.004 < x < 0.9 and 0.18 GeV^2 < Q^2 < 20 GeV^2. The data were collected by the HERMES experime nt at the HERA storage ring at DESY while studying inclusive deep-inelastic scattering of 27.6 GeV longitudinally polarized leptons off a transversely polarized hydrogen gas target. The results are consistent with previous experimental data from CERN and SLAC. For the x-range covered, the measured integral of g_2(x) converges to the null result of the Burkhardt-Cottingham sum rule. The x^2 moment of the twist-3 contribution to g_2(x) is found to be compatible with zero.
We studied the radiative muon decay $mu^+ to e^+ ubar{ u}gamma$ by using for the first time an almost fully polarized muon source. We identified a large sample (~13000) of these decays in a total sample of 1.8x10^14 positive muon decays collected in the MEG experiment in the years 2009--2010 and measured the branching ratio B($mu^+ to e^+ ubar{ u}gamma$) = (6.03+-0.14(stat.)+-0.53(sys.))x10^-8 for E_e > 45 MeV and E_{gamma} > 40 MeV, consistent with the Standard Model prediction. The precise measurement of this decay mode provides a basic tool for the timing calibration, a normalization channel, and a strong quality check of the complete MEG experiment in the search for $mu^+ to e^+gamma$ process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا