ﻻ يوجد ملخص باللغة العربية
A technique for improving the momentum resolution for low momentum charged particles in few layer silicon based trackers is presented. The particle momenta are determined from the measured Landau dE/dx distribution and the Bethe-Bloch formula in the 1/beta^2 region. It is shown that a factor of two improvement of the momentum determination is achieved as compared to standard track fitting methods. This improvement is important in large scale heavy ion experiments which cover the low transverse momentum spectra using stand-alone silicon tracking devices with a few planes like the ones used in STAR at RHIC and ALICE at LHC.
We propose to add high precision track detectors 55m downstream on both (E&W) sides of CDF, to measure high Feynman-x protons and antiprotons in association with central states. A primary motivation is to search for the Higgs boson, and if it is seen
The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined b
Ultra-Fast Silicon Detectors (UFSDs) are n-in-p silicon detectors that implement moderate gain (typically 5 to 25) using a thin highly doped p++ layer between the high resistivity p-bulk and the junction of the sensor. The presence of gain allows exc
The physics goals at the future e+e- linear collider require high performance vertexing and impact parameter resolution. Two possible technologies for the vertex detector of an experimental apparatus are outlined in the paper: an evolution of the Hyb
While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their