ﻻ يوجد ملخص باللغة العربية
This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the non-parametrical method. The non-parametrical method utilizes only the known $e/h$ ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within $pm 1%$ of the true values and the fractional energy resolution is $[(58pm3)% /sqrt{E}+(2.5pm0.3)%]oplus (1.7pm0.2)/E$. The value of the $e/h$ ratio obtained for the electromagnetic compartment of the combined calorimeter is $1.74pm0.04$ and agrees with the prediction that $e/h > 1.7$ for this electromagnetic calorimeter. Results of a study of the longitudinal hadronic shower development are also presented. The data have been taken in the H8 beam line of the CERN SPS using pions of energies from 10 to 300 GeV.
Hadron energy reconstruction for the Atlas barrel prototype combined calorimeter, consisting of the lead-liquid argon electromagnetic part and the iron-scintillator hadronic part, in the framework of the non-parametrical method has been fulfilled. Th
The intrinsic performance of the ATLAS barrel and extended barrel calorimeters for the measurement of charged pions is presented. Pion energy scans (E = 20, 50, 200, 400 and 1000 GeV) at two pseudo-rapidity points ($eta$ = 0.3 and 1.3) and pseudorapi
The new simple method of the energy reconstruction for a combined calorimeter, which we called the e/h method, is suggested. It uses only the known e/h ratios and the electron calibration constants and does not require the determination of any parame
We present first results from the ATLAS Zero Degree Calorimeters (ZDC) based on 7~TeV pp collision data recorded in 2010. The ZDC coverage of +/-~350 microradians about the forward direction makes possible the measurement of neutral particles (primar
This report is to provide a novel method for the lepton energy calibration at Hadron Collider Experiments. The method improves the classic lepton energy calibration procedure widely used at hadron collider experiments. The classic method parameterize