ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the flux of atmospheric muons with the CAPRICE94 apparatus

59   0   0.0 ( 0 )
 نشر من قبل Mirko Boezio
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A new measurement of the momentum spectra of both positive and negative muons as function of atmospheric depth was made by the balloon-borne experiment CAPRICE94. The data were collected during ground runs in Lynn Lake on the 19-20th of July 1994 and during the balloon flight on the 8-9th of August 1994. We present results that cover the momentum intervals 0.3-40 GeV/c for negative muons and 0.3-2 GeV/c for positive muons, for atmospheric depths from 3.3 to 1000 g/cm**2, respectively. Good agreement is found with previous measurements for high momenta, while at momenta below 1 GeV/c we find latitude dependent geomagnetic effects. These measurements are important cross-checks for the simulations carried out to calculate the atmospheric neutrino fluxes and to understand the observed atmospheric neutrino anomaly.



قيم البحث

اقرأ أيضاً

109 - Gavin Hesketh 2010
This paper describes a new measurement of the flux ratio of positive and negative muons from cosmic-ray interactions in the atmosphere, using data collected by the CMS detector at ground level and in the underground experimental cavern. The excellent performance of the CMS detector allowed detection of muons in the momentum range from 3 GeV to 1 TeV. For muon momenta below 100 GeV the flux ratio is measured to be a constant $1.2766 pm 0.0032(stat) pm 0.0032(syst)$, the most precise measurement to date. At higher momenta an increase in the charge asymmetry is observed, in agreement with models of muon production in cosmic-ray showers and compatible with previous measurements by deep-underground experiments.
We report the first measurement of the atmospheric electron neutrino flux in the energy range between approximately 80 GeV and 6 TeV, using data recorded during the first year of operation of IceCubes DeepCore low energy extension. Techniques to iden tify neutrinos interacting within the DeepCore volume and veto muons originating outside the detector are demonstrated. A sample of 1029 events is observed in 281 days of data, of which 496 $pm$ 66(stat.) $pm$ 88(syst.) are estimated to be cascade events, including both electron neutrino and neutral current events. The rest of the sample includes residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muon neutrinos. The flux of the atmospheric electron neutrinos is consistent with models of atmospheric neutrinos in this energy range. This constitutes the first observation of electron neutrinos and neutral current interactions in a very large volume neutrino telescope optimized for the TeV energy range.
The flux of neutrino-induced muons has been measured with the MACRO detector. Different event topologies have been detected, due to neutrino interactions in the apparatus and in the rock below it. The upward-throughgoing muon sample is the larger one and is generated by neutrinos with an average energy of ~ 100 GeV. The observed upward-throughgoing muons are 26% fewer than expected and the zenith angle distribution does not fit with the expected one. Assuming neutrino oscillations, both measurements suggest maximum mixing and Dm2 of a few times 10-3 eV2. The other event categories due to interactions of low-energy neutrinos (average energy ~ 4 GeV) have been recently studied and the results of these new analyses are presented for the first time at this workshop. These data show a regular deficit of observed events in each angular bin, as expected assuming neutrino oscillations with maximum mixing, in agreement with the analysis of the upward-throughgoing muona sample.
The ANTARES high energy neutrino telescope is a three-dimensional array of about 900 photomultipliers distributed over 12 mooring lines installed in the Mediterranean Sea. Between February and November 2007 it acquired data in a 5-line configuration. The zenith angular distribution of the atmospheric muon flux and the associated depth-intensity relation are measured and compared with previous measurements and Monte Carlo expectations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is presented.
The OPERA detector at the Gran Sasso underground laboratory (LNGS) was used to measure the atmospheric muon charge ratio in the TeV energy region. We analyzed 403069 atmospheric muons corresponding to 113.4 days of livetime during the 2008 CNGS run. We computed separately the muon charge ratio for single and for multiple muon events in order to select different energy regions of the primary cosmic ray spectrum and to test the charge ratio dependence on the primary composition. The measured charge ratio values were corrected taking into account the charge-misidentification errors. Data have also been grouped in five bins of the vertical surface energy. A fit to a simplified model of muon production in the atmosphere allowed the determination of the pion and kaon charge ratios weighted by the cosmic ray energy spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا