ﻻ يوجد ملخص باللغة العربية
The $ uebar$ flux and spectrum have been measured at a distance of about 800 m from the reactors of the Palo Verde Nuclear Generating Station using a segmented Gd-loaded liquid scintillator detector. Correlated positron-neutron events from the reaction $ uebar$p$to$e^+n were recorded for a period of 200 d including 55 d with one of the three reactors off for refueling. Backgrounds were accounted for by making use of the reactor-on and reactor-off cycles, and also with a novel technique based on the difference between signal and background under reversal of the e^+ and n portions of the events. A detailed description of the detector calibration, background subtraction, and data analysis is presented here. Results from the experiment show no evidence for neutrino oscillations. $ uebartobar u_x$ oscillations were excluded at 90% CL for $dm>1.12times10^{-3}$ eV^2 for full mixing, and $sinq>0.21$ for large $dm$. These results support the conclusion that the observed atmospheric neutrino oscillations does not involve $ u_{rm e}$.
The analysis and results are presented from the complete data set recorded at Palo Verde between September 1998 and July 2000. In the experiment, the $ uebar$ interaction rate has been measured at a distance of 750 and 890 m from the reactors of the
We report on the initial results from a measurement of the anti-neutrino flux and spectrum at a distance of about 800 m from the three reactors of the Palo Verde Nuclear Generating Station using a segmented gadolinium-loaded scintillation detector. W
The OPERA experiment has conclusively observed the appearance of tau neutrinos in the muon neutrino CNGS beam. Exploiting the OPERA detector capabilities, it was possible to isolate high purity samples of $ u_{e}$, $ u_{mu}$ and $ u_{tau}$ charged cu
The observation of the recent electron neutrino appearance in a muon neutrino beam and the high-precision measurement of the mixing angle $theta_{13}$ have led to a re-evaluation of the physics potential of the T2K long-baseline neutrino oscillation
The last unknown neutrino mixing angle $theta_{13}$ is one of the fundamental parameters of nature; it is also a crucial parameter for determining the sensitivity of future long-baseline experiments aimed to study CP violation in the neutrino sector.