ﻻ يوجد ملخص باللغة العربية
We construct explicitly generators of projectable four-dimensional diffeomorphisms and triad rotation gauge symmetries in a model of vacuum gravity where the fundamental dynamical variables in a Palatini formulation are taken to be a lapse, shift, densitized triad, extrinsic curvature, and the time-like components of the Ricci rotation coefficient. Time-foliation-altering diffeomorphisms are not by themselves projectable under the Legendre transformations. They must be accompanied by a metric- and triad-dependent triad rotation. The phase space on which these generators act includes all of the gauge variables of the model.
It might seem that a choice of a time coordinate in Hamiltonian formulations of general relativity breaks the full four-dimensional diffeomorphism covariance of the theory. This is not the case. We construct explicitly the complete set of gauge gener
We implement a spatially fixed mesh refinement under spherical symmetry for the characteristic formulation of General Relativity. The Courant-Friedrich-Levy (CFL) condition lets us deploy an adaptive resolution in (retarded-like) time, even for the n
We apply the 1+1+2 covariant approach to describe a general static and spherically symmetric relativistic stellar object which contains two interacting fluids. We then use the 1+1+2 equations to derive the corresponding Tolman-Oppenheimer-Volkoff (TO
We describe a numerical code that solves Einsteins equations for a Schwarzschild black hole in spherical symmetry, using a hyperbolic formulation introduced by Choquet-Bruhat and York. This is the first time this formulation has been used to evolve a
We discuss reality conditions and the relation between spacetime diffeomorphisms and gauge transformations in Ashtekars complex formulation of general relativity. We produce a general theoretical framework for the stabilization algorithm for the real