ﻻ يوجد ملخص باللغة العربية
We investigate FRW cosmological solutions in the theory of modulus field coupled to gravity through a Gauss-Bonnet term. The explicit analytical forms of nonsingular asymptotics are presented for power-law and exponentially steep modulus coupling functions. We study the influence of modulus field potential on these asymptotical regimes and find some forms of the potential which do not destroy the nonsingular behavior. In particular, we obtain that exponentially steep coupling functions arising from the string theory do not allow nonsingular past asymptotic unless modulus field potential tends to zero for modulus field $psi to pm infty$. Finally, the modification of the chaotic dynamics in the closed FRW universe due to presence of the Gauss-Bonnet term is discussed.
We investigate Bianchi I cosmological model in the theory of a dilatonM field coupled to gravity through a Gauss-Bonnet term. Two type ofM cosmological singularity are distinguished. The former is analogous toM the Einstein gravity singularity, the l
We present a new bouncing cosmological solution of the non-local theory known as infinite derivative gravity, which goes beyond the recursive ansatz, ${Box R = r_1 R +r_2}$. The non-local field equations are evaluated using the spectral decomposition
Four-dimensional black hole solutions generated by the low energy string effective action are investigated outside and inside the event horizon. A restriction for a minimal black hole size is obtained in the frame of the model discussed. Intersection
The influence of higher order (stringly inspired) curvature corrections to the classical General Relativity spherically symmetric solution is studied. In string gravity these curvature corrections have a special form and can provide a singular contri
It was found recently that the anisotropies in the homogeneous Bianchi I cosmology considered within the context of a specific Horndeski theory are damped near the initial singularity instead of being amplified. In this work we extend the analysis of