ترغب بنشر مسار تعليمي؟ اضغط هنا

The Scalar-Tensor Inflationary Cosmology

152   0   0.0 ( 0 )
 نشر من قبل Wang Mian
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mian Wang




اسأل ChatGPT حول البحث

In this paper the scalar-tensor theory of gravity is assumed to describe the evolution of the universe and the gravitational scalar $phi$ is ascribed to play the role of inflaton. The theory is characterized by the specified coupling function $omega(phi)$ and the cosmological function $lambda(phi)$. The function $lambda(phi)$ is nearly constant for $0<phi<0.1$ and $lambda(1)=0$. The functions $lambda(phi)$ and $omega(phi)$ provide a double-well potential for the motion of $phi(t)$. Inflation commences and ends naturally by the dynamics of the scalar field. The energy density of matter increases steadily during inflation. When the constant $Gamma$ in the action is determined by the present matter density, the temperature at the end of inflation is of the order of $10^{14} GeV$ in no need of reheating. Furthermore, the gravitational scalar is just the cold dark matter that men seek for.



قيم البحث

اقرأ أيضاً

We study the cosmology on the Friedmann-Lemaitre-Robertson-Walker background in scalar-vector-tensor theories with a broken $U(1)$ gauge symmetry. For parity-invariant interactions arising in scalar-vector-tensor theories with second-order equations of motion, we derive conditions for the absence of ghosts and Laplacian instabilities associated with tensor, vector, and scalar perturbations at linear order. This general result is applied to the computation of the primordial tensor power spectrum generated during inflation as well as to the speed of gravity relevant to dark energy. We also construct a concrete inflationary model in which a temporal vector component $A_0$ contributes to the dynamics of cosmic acceleration besides a scalar field $phi$ through their kinetic mixings. In this model, we show that all the stability conditions of perturbations can be consistently satisfied during inflation and subsequent reheating.
By means of the Greens function method, we computed the spectral indices up to third order in the slow-roll approximation for a general scalar-tensor theory in both the Einstein and Jordan frames. Using quantities which are invariant under the confor mal rescaling of the metric and transform as scalar functions under the reparametrization of the scalar field, we showed that the frames are equivalent up to this order due to the underlying assumptions. Nevertheless, care must be taken when defining the number of $e$-folds.
In this work we shall study the implications of a subclass of $E$-models cosmological attractors, namely of $a$-attractors, on hydrodynamically stable slowly rotating neutron stars. Specifically, we shall present the Jordan frame theory of the $a$-at tractors, and by using a conformal transformation we shall derive the Einstein frame theory. We discuss the inflationary context of $a$-attractors in order to specify the allowed range of values for the free parameters of the model based on the latest cosmic-microwave-background-based Planck 2018 data. Accordingly, using the notation and physical units frequently used in theoretical astrophysics contexts, we shall derive the Tolman-Oppenheimer-Volkoff equations in the Einstein frame. Assuming a piecewise polytropic equation of state, the lowest density part of which shall be chosen to be the WFF1, or APR or the SLy EoS, we numerically solve the Tolman-Oppenheimer-Volkoff equations using a double shooting python-based LSODA numerical code. The resulting picture depends on the value of the parameter $a$ characterizing the $a$-attractors. As we show, for large values of $a$, which do not produce a viable inflationary era, the $M-R$ graphs are nearly identical to the general relativistic result, and these two are discriminated at large central densities values. Also, for large $a$-values, the WFF1 equation of state is excluded, due to the GW170817 constraints. In addition, the small $a$ cases produce larger masses and radii compared to the general relativistic case and are compatible with the GW170817 constraints on the radii of neutron stars. Our results indicate deep and not yet completely understood connections between non-minimal inflationary attractors and neutron stars phenomenology in scalar-tensor theory.
135 - Tomislav Prokopec 2008
We calculate the expectation value of the coincident product of two field strength tensors at two loop order in scalar electrodynamics on de Sitter background. The result agrees with the stochastic formulation which we have developed in a companion p aper [2] for the nonperturbative resummation of leading logarithms of the scale factor. When combined with a previous computation of scalar bilinears [1], our current result also gives the two loop stress-energy tensor for inflationary scalar electrodynamics. This shows a secular decrease in the vacuum energy which derives from the vacuum polarization induced by the inflationary production of charged scalars.
We investigate the cosmological applications of new gravitational scalar-tensor theories, which are novel modifications of gravity possessing 2+2 propagating degrees of freedom, arising from a Lagrangian that includes the Ricci scalar and its first a nd second derivatives. Extracting the field equations we obtain an effective dark energy sector that consists of both extra scalar degrees of freedom, and we determine various observables. We analyze two specific models and we obtain a cosmological behavior in agreement with observations, i.e. transition from matter to dark energy era, with the onset of cosmic acceleration. Additionally, for a particular range of the model parameters, the equation-of-state parameter of the effective dark energy sector can exhibit the phantom-divide crossing. These features reveal the capabilities of these theories, since they arise solely from the novel, higher-derivative terms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا