ﻻ يوجد ملخص باللغة العربية
Starting with a `bare 4-dimensional differential manifold as a model of spacetime, we discuss the options one has for defining a volume element which can be used for physical theories. We show that one has to prescribe a scalar density sigma. Whereas conventionally sqrt{|det g_{ij}|} is used for that purpose, with g_{ij} as the components of the metric, we point out other possibilities, namely sigma as a `dilaton field or as a derived quantity from either a linear connection or a quartet of scalar fields, as suggested by Guendelman and Kaganovich.
We consider the linear perturbations for the single scalar field inflation model interacting with an additional triad of scalar fields. The background solutions of the three additional scalar fields depend on spatial coordinates with a constant gradi
The main aim of this paper is twofold. (1) Exact solutions of a scalar field in the Schwarzschild spacetime are presented. The exact wave functions of scattering states and bound-states are presented. Besides the exact solution, we also provide expli
We discuss the uniqueness of asymptotically flat and static spacetimes in the $n$-dimensional Einstein-conformal scalar system. This theory potentially has a singular point in the field equations where the effective Newton constant diverges. We will
We review a technique for solving a class of classical linear partial differential systems of relevance to physics in Minkowski spacetime. All the equations are amenable to analysis in terms of complex solutions in the kernel of the scalar Laplacian
The method of adiabatic invariants for time dependent Hamiltonians is applied to a massive scalar field in a de Sitter space-time. The scalar field ground state, its Fock space and coherent states are constructed and related to the particle states. D