ﻻ يوجد ملخص باللغة العربية
According to this principle (EEP), in order that the local physical laws cannot change, after changes of velocity and potentials of a measuring system, the relativistic changes of any particle and any stationary radiation (like those used to measure it) must occur in identical proportion. Thus particles and stationary radiations must have the same general physical properties. In principle more exact and better defined physical laws for particles and their gravitational (G) fields can be derived from properties of particle models made up of radiation in stationary states after using fixed reference frames that dont change in the same way as the objects. Effectively, the new laws derived in this way do correspond with relativistic quantum mechanics and with all of the G tests. The main difference with current gravity is the linearity fixed by the EEP, i.e., the G field itself has not a real field energy to exchange with the bodies and it is not a secondary source of field. G work liberates energy confined in the models stationary states. The EEP also fixes a new astrophysical context that has fundamental differences with the current ones. This one has been presented in a separated work as a test for the EEP. The whole theory,including the new universe context fixed by the EEP, was published in a book.
Occurrence of spacetime singularities is one of the peculiar features of Einstein gravity, signalling limitation on probing short distances in spacetime. This alludes to the existence of a fundamental length scale in nature. On contrary, Heisenberg q
Theories of gravity that obey the Weak Equivalence Principle have the same Parametrised Post-Newtonian parameter $gamma$ for all particles at all energies. The large Shapiro time delays of extragalactic sources allow us to put tight constraints on di
We investigate leading order deviations from general relativity that violate the Einstein equivalence principle in the gravitational standard model extension. We show that redshift experiments based on matter waves and clock comparisons are equivalen
This work refers to the new formula for the superpotential Uikl in conservation laws in general relativity satisfying the integral and differential conservation laws within the Schwarzschild metric. The new superpotential is composed of two terms. Th
Backgrounds are pervasive in almost every application of general relativity. Here we consider the Lagrangian formulation of general relativity for large perturbations with respect to a curved background spacetime. We show that Noethers theorem combin