ﻻ يوجد ملخص باللغة العربية
We explicitly construct and characterize all possible independent loop states in 3+1 dimensional loop quantum gravity by regulating it on a 3-d regular lattice in the Hamiltonian formalism. These loop states, characterized by the (dual) angular momentum quantum numbers, describe SU(2) rigid rotators on the links of the lattice. The loop states are constructed using the Schwinger bosons which are harmonic oscillators in the fundamental (spin half) representation of SU(2). Using generalized Wigner Eckart theorem, we compute the matrix elements of the volume operator in the loop basis. Some simple loop eigenstates of the volume operator are explicitly constructed.
In a recent paper, we introduced a new discretization scheme for gravity in 2+1 dimensions. Starting from the continuum theory, this new scheme allowed us to rigorously obtain the discrete phase space of loop gravity, coupled to particle-like edge mo
The simplicial framework of Engle-Pereira-Rovelli-Livine spin-foam models is generalized to match the diffeomorphism invariant framework of loop quantum gravity. The simplicial spin-foams are generalized to arbitrary linear 2-cell spin-foams. The res
We discuss constraint structure of extended theories of gravitation (also known as f(R) theories) in the vacuum selfdual formulation introduced in ref. [1].
The one-loop partition function of the $f(R,R_{mu u}R^{mu u})$ gravity theory is obtained around AdS$_4$ background. After suitable choice of the gauge condition and computation of the ghost determinant, we obtain the one-loop partition function of t
In canonical quantum gravity, the presence of spatial boundaries naturally leads to a boundary quantum states, representing quantum boundary conditions for the bulk fields. As a consequence, quantum states of the bulk geometry needs to be upgraded to