ﻻ يوجد ملخص باللغة العربية
We investigate the dynamic stability of inspiraling neutron stars by performing multiple-orbit numerical relativity simulations of the binary neutron star inspiral process. By introducing eccentricities in the orbits of the neutron stars, significant changes in orbital separation are obtained within orbital timescales. We find that as the binary system evolves from apastron to periastron (as the binary separation decreases), the central rest mass density of each star decreases, thus stabilizing the stars against individual prompt collapse. As the binary system evolves from periastron to apastron, the central rest mass density increases; the neutron stars re-compress as the binary separation increases.
We have studied the dynamics of an equal-mass magnetized neutron-star binary within a resistive magnetohydrodynamic (RMHD) approach in which the highly conducting stellar interior is matched to an electrovacuum exterior. Because our analysis is aimed
An approach to general relativity based on conformal flatness and quasiequilibrium (CFQE) assumptions has played an important role in the study of the inspiral dynamics and in providing initial data for fully general relativistic numerical simulation
This paper reports on our effort in modeling realistic astrophysical neutron star binaries in general relativity. We analyze under what conditions the conformally flat quasiequilibrium (CFQE) approach can generate ``astrophysically relevant initial d
Although general relativistic cosmological solutions, even in the presence of pressure, can be mimicked by using neo-Newtonian hydrodynamics, it is not clear whether there exists the same Newtonian correspondence for spherical static configurations.
We compute the internal modes of a non-spinning neutron star and its tidal metric perturbation in general relativity, and determine the effect of relativistic corrections to the modes on mode coupling and the criterion for instability. Claims have be