Given a globally hyperbolic spacetime $M$, we show the existence of a {em smooth spacelike} Cauchy hypersurface $S$ and, thus, a global diffeomorphism between $M$ and $R times S$.
Recently, folk questions on the smoothability of Cauchy hypersurfaces and time functions of a globally hyperbolic spacetime M, have been solved. Here we give further results, applicable to several problems: (1) Any compact spacelike acausal submani
fold H with boundary can be extended to a spacelike Cauchy hypersurface S. If H were only achronal, counterexamples to the smooth extension exist, but a continuous extension (in fact, valid for any compact achronal subset K) is still possible. (2) Given any spacelike Cauchy hypersurface S, a Cauchy temporal function T (i.e., a smooth function with past-directed timelike gradient everywhere, and Cauchy hypersurfaces as levels) with S equal to one of the levels, is constructed -thus, the spacetime splits orthogonally as $R times S$ in a canonical way. Even more, accura
We complement our work on the causality of upper semi-continuous distributions of cones with some results on Cauchy hypersurfaces. We prove that every locally stably acausal Cauchy hypersurface is stable. Then we prove that the signed distance $d_S$
from a spacelike hypersurface $S$ is, in a neighborhood of it, as regular as the hypersurface, and by using this fact we give a proof that every Cauchy hypersurface is the level set of a Cauchy temporal (and steep) function of the same regularity as the hypersurface. We also show that in a globally hyperbolic closed cone structure compact spacelike hypersurfaces with boundary can be extended to Cauchy spacelike hypersurfaces of the same regularity. We end the work with a separation result and a density result.
The isolated horizon formalism recently introduced by Ashtekar et al. aims at providing a quasi-local concept of a black hole in equilibrium in an otherwise possibly dynamical spacetime. In this formalism, a hierarchy of geometrical structures is con
structed on a null hypersurface. On the other side, the 3+1 formulation of general relativity provides a powerful setting for studying the spacetime dynamics, in particular gravitational radiation from black hole systems. Here we revisit the kinematics and dynamics of null hypersurfaces by making use of some 3+1 slicing of spacetime. In particular, the additional structures induced on null hypersurfaces by the 3+1 slicing permit a natural extension to the full spacetime of geometrical quantities defined on the null hypersurface. This 4-dimensional point of view facilitates the link between the null and spatial geometries. We proceed by reformulating the isolated horizon structure in this framework. We also reformulate previous works, such as Damours black hole mechanics, and make the link with a previous 3+1 approach of black hole horizon, namely the membrane paradigm. We explicit all geometrical objects in terms of 3+1 quantities, putting a special emphasis on the conformal 3+1 formulation. This is in particular relevant for the initial data problem of black hole spacetimes for numerical relativity. Illustrative examples are provided by considering various slicings of Schwarzschild and Kerr spacetimes.