The French-Italian interferometric gravitational wave detector VIRGO is currently being commissioned. Its principal instrument is a Michelson laser interferometer with 3 km long optical cavities in the arms and a power-recycling mirror. The interferometer resides in an ultra-high vacuum system and the mirrors are suspended from multistage pendulums for seismic isolation. This type of laser interferometer reaches its maximum sensitivity only when the optical setup is held actively very accurately at a defined operating point: control systems using the precise interferometer signals stabilise the longitudinal and angular positions of the optical component. This paper gives an overview of the control system for the angular degrees of freedom; we present the current status of the system and report the first experimental demonstration of the Anderson technique on a large-scale interferometer.