ﻻ يوجد ملخص باللغة العربية
A detailed analysis of dynamics of cosmological models based on $R^{n}$ gravity is presented. We show that the cosmological equations can be written as a first order autonomous system and analyzed using the standard techniques of dynamical system theory. In absence of perfect fluid matter, we find exact solutions whose behavior and stability are analyzed in terms of the values of the parameter $n$. When matter is introduced, the nature of the (non-minimal) coupling between matter and higher order gravity induces restrictions on the allowed values of $n$. Selecting such intervals of values and following the same procedure used in the vacuum case, we present exact solutions and analyze their stability for a generic value of the parameter $n$. From this analysis emerges the result that for a large set of initial conditions an accelerated expansion is an attractor for the evolution of the $R^n$ cosmology. When matter is present a transient almost-Friedman phase can also be present before the transition to an accelerated expansion.
A complete analysis of the dynamics of the Hu-Sawicki modification to General Relativity is presented. In particular, the full phase-space is given for the case in which the model parameters are taken to be n=1, c1=1, and several stable de Sitter equ
One of the so-called viable modified gravities is analyzed. This kind of gravity theories are characterized by a well behavior at local scales, where General Relativity is recovered, while the modified terms become important at the cosmological level
The Universe evolution during the radiation-dominated epoch in the R^2-extended gravity theory is considered. The equations of motion for R and H are solved analytically and numerically. The particle production rate by the oscillating curvature is ca
Modified gravity is one of the most promising candidates for explaining the current accelerating expansion of the Universe, and even its unification with the inflationary epoch. Nevertheless, the wide range of models capable to explain the phenomena
In this paper we investigate the cosmological dynamics of an up to cubic curvature correction to General Relativity (GR) known as Cosmological Einsteinian Cubic Gravity (CECG), whose vacuum spectrum consists of the graviton exclusively and its cosmol