ﻻ يوجد ملخص باللغة العربية
We show that NSs with large toroidal B-fields tend naturally to evolve into potent gravitational-wave (gw) emitters. The toroidal field B_t tends to distort the NS into a prolate shape, and this magnetic distortion can easily dominate over the oblateness ``frozen into the NS crust. An elastic NS with frozen-in B-field of this magnitude is clearly secularly unstable: the wobble angle between the NSs angular momentum J^i and the stars magnetic axis n_B^i grow on a dissipation timescale until J^i and n_B^i are orthogonal. This final orientation is clearly the optimal one for gravitational-wave (gw) emission. The basic cause of the instability is quite general, so we conjecture that the same final state is reached for a realistic NS. Assuming this, we show that for LMXBs with B_t of order 10^{13}G, the spindown from gws is sufficient to balance the accretion torque--supporting a suggestion by Bildsten. The spindown rates of most millisecond pulsars can also be attributed to gw emission sourced by toroidal B-fields, and both these sources could be observed by LIGO II. While the first-year spindown of a newborn NS is most likely dominated by em processes, reasonable values of B_t and the (external) dipolar field B_d can lead to detectable levels of gw emission, for a newborn NS in our own galaxy.
We present general relativistic hydrodynamics simulations of constant specific angular momentum tori orbiting a Schwarzschild black hole. These tori are expected to form as a result of stellar gravitational collapse, binary neutron star merger or dis
We investigate the possibility of observing very low frequency (VLF) electromagnetic radiation produced from the vacuum by gravitational waves. We review the calculations leading to the possibility of vacuum conversion of gravitational waves into ele
We describe a directed search for continuous gravitational waves in data from the sixth LIGO science run. The target was the nearby globular cluster NGC 6544 at a distance of 2.7 kpc. The search covered a broad band of frequencies along with first an
Gravitational waves from merging neutron stars are expected to be observed in the next 5 years. We explore the potential impact of matter effects on gravitational waves from merging double neutron-star binaries. If neutron star binaries exist with ch
Certain scalar-tensor theories have the property of endowing stars with scalar hair, sourced either by the stars own compactness (spontaneous scalarization) or, for binary systems, by the companions scalar hair (induced scalarization) or by the orbit