ﻻ يوجد ملخص باللغة العربية
We show that an invariant surface allows to construct the Jacobi vector field along a geodesic and construct the formula for the normal component of the Jacobi field. If a geodesic is the transversal intersection of two invariant surfaces (such situation we have, for example, if the geodesic is hyperbolic), then we can construct a fundamental solution of the the Jacobi-Hill equation. This is done for quadratically integrable geodesic flows.
Normal geodesic flows flows of Carnot-Caratheodory are discussed from the point of view of the theory of Hamiltonian systems. The geodesic flows corresponding to left-invariant metrics and left- and -right-invariant rank 2 distributions on the three-
In the present paper we prove, that if the geodesic flow of a metric G on the torus T is quadratically integrable, then the torus T isometrically covers a torus with a Liouville metric on it, and describe the set of quadratically integrable geodesic flows on the Klein bottle.
Learning a distance function or metric on a given data manifold is of great importance in machine learning and pattern recognition. Many of the previous works first embed the manifold to Euclidean space and then learn the distance function. However,
For any toric automorphism with only real eigenvalues a Riemannian metric with an integrable geodesic flow on the suspension of this automorphism is constructed. A qualitative analysis of such a flow on a three-solvmanifold constructed by the authors
The problem of the existence of an additional (independent on the energy) first integral, of a geodesic (or magnetic geodesic) flow, which is polynomial in momenta is studied. The relation of this problem to the existence of nontrivial solutions of s