ترغب بنشر مسار تعليمي؟ اضغط هنا

Seiberg-Witten-Floer Theory for Homology 3-Spheres

61   0   0.0 ( 0 )
 نشر من قبل Bryan Wang
 تاريخ النشر 1996
  مجال البحث
والبحث باللغة English
 تأليف Bai-Ling Wang




اسأل ChatGPT حول البحث

We give the definition of the Seiberg-Witten-Floer homology group for a homology 3-sphere. Its Euler characteristic number is a Casson-type invariant. For a four-manifold with boundary a homology sphere, a relative Seiberg-Witten invariant is defined taking values in the Seiberg-Witten-Floer homology group, these relative Seiberg-Witten invariants are applied to certain homology spheres bounding Stein surfaces.



قيم البحث

اقرأ أيضاً

We construct a generalization of the Seiberg-Witten Floer spectrum for suitable three-manifolds $Y$ with $b_1(Y)>0$. For a cobordism between three-manifolds we define Bauer-Furuta maps on these new spectra, and additionally compute some examples.
172 - Eaman Eftekhary 2013
We show that if a prime homology sphere has the same Floer homology as the standard three-sphere, it does not contain any incompressible tori.
We derive a family of matrix models which encode solutions to the Seiberg-Witten theory in 4 and 5 dimensions. Partition functions of these matrix models are equal to the corresponding Nekrasov partition functions, and their spectral curves are the S eiberg-Witten curves of the corresponding theories. In consequence of the geometric engineering, the 5-dimensional case provides a novel matrix model formulation of the topological string theory on a wide class of non-compact toric Calabi-Yau manifolds. This approach also unifies and generalizes other matrix models, such as the Eguchi-Yang matrix model, matrix models for bundles over $P^1$, and Chern-Simons matrix models for lens spaces, which arise as various limits of our general result.
330 - Jianfeng Lin , Daniel Ruberman , 2017
We study the Seiberg-Witten invariant $lambda_{rm{SW}} (X)$ of smooth spin $4$-manifolds $X$ with integral homology of $S^1times S^3$ defined by Mrowka, Ruberman, and Saveliev as a signed count of irreducible monopoles amended by an index-theoretic c orrection term. We prove a splitting formula for this invariant in terms of the Fr{o}yshov invariant $h(X)$ and a certain Lefschetz number in the reduced monopole Floer homology of Kronheimer and Mrowka. We apply this formula to obstruct existence of metrics of positive scalar curvature on certain 4-manifolds, and to exhibit new classes of integral homology $3$-spheres of Rohlin invariant one which have infinite order in the homology cobordism group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا