ترغب بنشر مسار تعليمي؟ اضغط هنا

KEA: Practical Automatic Keyphrase Extraction

214   0   0.0 ( 0 )
 نشر من قبل Craig Nevill-Manning
 تاريخ النشر 1999
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Keyphrases provide semantic metadata that summarize and characterize documents. This paper describes Kea, an algorithm for automatically extracting keyphrases from text. Kea identifies candidate keyphrases using lexical methods, calculates feature values for each candidate, and uses a machine-learning algorithm to predict which candidates are good keyphrases. The machine learning scheme first builds a prediction model using training documents with known keyphrases, and then uses the model to find keyphrases in new documents. We use a large test corpus to evaluate Keas effectiveness in terms of how many author-assigned keyphrases are correctly identified. The system is simple, robust, and publicly available.



قيم البحث

اقرأ أيضاً

Electronic Theses and Dissertations (ETDs) contain domain knowledge that can be used for many digital library tasks, such as analyzing citation networks and predicting research trends. Automatic metadata extraction is important to build scalable digi tal library search engines. Most existing methods are designed for born-digital documents, so they often fail to extract metadata from scanned documents such as for ETDs. Traditional sequence tagging methods mainly rely on text-based features. In this paper, we propose a conditional random field (CRF) model that combines text-based and visual features. To verify the robustness of our model, we extended an existing corpus and created a new ground truth corpus consisting of 500 ETD cover pages with human validated metadata. Our experiments show that CRF with visual features outperformed both a heuristic and a CRF model with only text-based features. The proposed model achieved 81.3%-96% F1 measure on seven metadata fields. The data and source code are publicly available on Google Drive (https://tinyurl.com/y8kxzwrp) and a GitHub repository (https://github.com/lamps-lab/ETDMiner/tree/master/etd_crf), respectively.
Keyphrases are capable of providing semantic metadata characterizing documents and producing an overview of the content of a document. Since keyphrase extraction is able to facilitate the management, categorization, and retrieval of information, it h as received much attention in recent years. There are three approaches to address keyphrase extraction: (i) traditional two-step ranking method, (ii) sequence labeling and (iii) generation using neural networks. Two-step ranking approach is based on feature engineering, which is labor intensive and domain dependent. Sequence labeling is not able to tackle overlapping phrases. Generation methods (i.e., Sequence-to-sequence neural network models) overcome those shortcomings, so they have been widely studied and gain state-of-the-art performance. However, generation methods can not utilize context information effectively. In this paper, we propose a novelty Span Keyphrase Extraction model that extracts span-based feature representation of keyphrase directly from all the content tokens. In this way, our model obtains representation for each keyphrase and further learns to capture the interaction between keyphrases in one document to get better ranking results. In addition, with the help of tokens, our model is able to extract overlapped keyphrases. Experimental results on the benchmark datasets show that our proposed model outperforms the existing methods by a large margin.
The premise of manual keyphrase annotation is to read the corresponding content of an annotated object. Intuitively, when we read, more important words will occupy a longer reading time. Hence, by leveraging human reading time, we can find the salien t words in the corresponding content. However, previous studies on keyphrase extraction ignore human reading features. In this article, we aim to leverage human reading time to extract keyphrases from microblog posts. There are two main tasks in this study. One is to determine how to measure the time spent by a human on reading a word. We use eye fixation durations extracted from an open source eye-tracking corpus (OSEC). Moreover, we propose strategies to make eye fixation duration more effective on keyphrase extraction. The other task is to determine how to integrate human reading time into keyphrase extraction models. We propose two novel neural network models. The first is a model in which the human reading time is used as the ground truth of the attention mechanism. In the second model, we use human reading time as the external feature. Quantitative and qualitative experiments show that our proposed models yield better performance than the baseline models on two microblog datasets.
Keyphrase extraction (KE) aims to summarize a set of phrases that accurately express a concept or a topic covered in a given document. Recently, Sequence-to-Sequence (Seq2Seq) based generative framework is widely used in KE task, and it has obtained competitive performance on various benchmarks. The main challenges of Seq2Seq methods lie in acquiring informative latent document representation and better modeling the compositionality of the target keyphrases set, which will directly affect the quality of generated keyphrases. In this paper, we propose to adopt the Dynamic Graph Convolutional Networks (DGCN) to solve the above two problems simultaneously. Concretely, we explore to integrate dependency trees with GCN for latent representation learning. Moreover, the graph structure in our model is dynamically modified during the learning process according to the generated keyphrases. To this end, our approach is able to explicitly learn the relations within the keyphrases collection and guarantee the information interchange between encoder and decoder in both directions. Extensive experiments on various KE benchmark datasets demonstrate the effectiveness of our approach.
Embedding based methods are widely used for unsupervised keyphrase extraction (UKE) tasks. Generally, these methods simply calculate similarities between phrase embeddings and document embedding, which is insufficient to capture different context for a more effective UKE model. In this paper, we propose a novel method for UKE, where local and global contexts are jointly modeled. From a global view, we calculate the similarity between a certain phrase and the whole document in the vector space as transitional embedding based models do. In terms of the local view, we first build a graph structure based on the document where phrases are regarded as vertices and the edges are similarities between vertices. Then, we proposed a new centrality computation method to capture local salient information based on the graph structure. Finally, we further combine the modeling of global and local context for ranking. We evaluate our models on three public benchmarks (Inspec, DUC 2001, SemEval 2010) and compare with existing state-of-the-art models. The results show that our model outperforms most models while generalizing better on input documents with different domains and length. Additional ablation study shows that both the local and global information is crucial for unsupervised keyphrase extraction tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا