ﻻ يوجد ملخص باللغة العربية
We study the existence of automatic presentations for various algebraic structures. An automatic presentation of a structure is a description of the universe of the structure by a regular set of words, and the interpretation of the relations by synchronised automata. Our first topic concerns characterising classes of automatic structures. We supply a characterisation of the automatic Boolean algebras, and it is proven that the free Abelian group of infinite rank, as well as certain Fraisse limits, do not have automatic presentations. In particular, the countably infinite random graph and the random partial order do not have automatic presentations. Furthermore, no infinite integral domain is automatic. Our second topic is the isomorphism problem. We prove that the complexity of the isomorphism problem for the class of all automatic structures is Sigma_1^1-complete.
We consider $omega^n$-automatic structures which are relational structures whose domain and relations are accepted by automata reading ordinal words of length $omega^n$ for some integer $ngeq 1$. We show that all these structures are $omega$-tree-aut
An $omega$-tree-automatic structure is a relational structure whose domain and relations are accepted by Muller or Rabin tree automata. We investigate in this paper the isomorphism problem for $omega$-tree-automatic structures. We prove first that th
Affine $lambda$-terms are $lambda$-terms in which each bound variable occurs at most once and linear $lambda$-terms are $lambda$-terms in which each bound variables occurs once. and only once. In this paper we count the number of closed affine $lambd
We study the (hereditary) discrepancy of definable set systems, which is a natural measure for their inherent complexity and approximability. We establish a strong connection between the hereditary discrepancy and quantifier elimination over signatur
We prove that the injectively omega-tree-automatic ordinals are the ordinals smaller than $omega^{omega^omega}$. Then we show that the injectively $omega^n$-automatic ordinals, where $n>0$ is an integer, are the ordinals smaller than $omega^{omega^n}