ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-resolved optical observation of spin-wave dynamics

99   0   0.0 ( 0 )
 نشر من قبل J. Steven Dodge
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have created a nonequilibrium population of antiferromagnetic spin-waves in Cr2O3, and characterized its dynamics, using frequency- and time-resolved nonlinear optical spectroscopy of the exciton-magnon transition. We observe a time-dependent pump-probe line shape, which results from excitation induced renormalization of the spin-wave band structure. We present a model that reproduces the basic characteristics of the data, in which we postulate the optical nonlinearity to be dominated by interactions with long-wavelength spin-waves, and the dynamics to be due to spin-wave thermalization.



قيم البحث

اقرأ أيضاً

We investigate the hot carrier dynamics of ZrTe$_5$ by ultrafast time-resolved optical reflectivity. Our results reveal a phonon-mediated across-gap recombination, consistent with its temperature-dependent gap nature as observed previously by photoem ission. In addition, two distinct relaxations with a kink feature right after initial photoexcitation are well resolved, suggesting the complexity of electron thermalization process. Our findings indicate that correlated many-body effects play important role for the transient dynamics of ZrTe$_5$.
The dynamics of magnetization under femtosecond optical excitation is studied in a ferromagnetic semiconductor Ga_{0.94}Mn_{0.06}As with a time-resolved magneto-optical Kerr effect measurement with two color probe beams. The transient reflectivity ch ange indicates the rapid rise of the carrier temperature and relaxation to a quasi-thermal equilibrium within 1 ps, while a very slow rise of the spin temperature of the order of 500ps is observed. This anomalous behavior originates from the thermal isolation between the charge and spin systems due to the spin polarization of carriers (holes) contributing to ferromagnetism. This constitutes experimental proof of the half-metallic nature of ferromagnetic Ga_{0.94}Mn_{0.06}As arising from double exchange type mechanism originates from the d-band character of holes.
Experimental and theoretical studies of all-optical spin pump and probe of resident electrons in CdTe/(Cd,Mg)Te semiconductor quantum wells are reported. A two-color Hanle-MOKE technique (based on continuous-wave excitation) and time-resolved Kerr ro tation in the regime of resonant spin amplification (based on pulsed excitation) provide a complementary measure of electron spin relaxation time. Influence of electron localization on long-lived spin coherence is examined by means of spectral and temperature dependencies. Various scenarios of spin polarization generation (via the trion and exciton states) are analyzed and difference between continuous-wave and pulsed excitations is considered. Effects related to inhomogeneous distribution of $g$-factor and anisotropic spin relaxation time on measured quantities are discussed.
The generation and manipulation of carrier spin polarization in semiconductors solely by electric fields has garnered significant attention as both an interesting manifestation of spin-orbit physics as well as a valuable capability for potential spin tronics devices. One realization of these spin-orbit phenomena, the spin Hall effect (SHE), has been studied as a means of all-electrical spin current generation and spin separation in both semiconductor and metallic systems. Previous measurements of the spin Hall effect have focused on steady-state generation and time-averaged detection, without directly addressing the accumulation dynamics on the timescale of the spin coherence time. Here, we demonstrate time-resolved measurement of the dynamics of spin accumulation generated by the extrinsic spin Hall effect in a doped GaAs semiconductor channel. Using electrically-pumped time-resolved Kerr rotation, we image the accumulation, precession, and decay dynamics near the channel boundary with spatial and temporal resolution and identify multiple evolution time constants. We model these processes using time-dependent diffusion analysis utilizing both exact and numerical solution techniques and find that the underlying physical spin coherence time differs from the dynamical rates of spin accumulation and decay observed near the sample edges.
We use time- and angle-resolved photoemission spectroscopy to characterize the dynamics of the energy gap in superconducting Bi2Sr2CaCu2O8+delta (Bi2212). Photoexcitation drives the system into a nonequilibrium pseudogap state: Near the Brillouin zon e diagonal (inside the normal-state Fermi arc), the gap completely closes for a pump fluence beyond F = 15 {mu}J/cm^2; toward the Brillouin zone face (outside the Fermi arc), it remains open to at least 24 {mu}J/cm^2. This strongly anisotropic gap response may indicate multiple competing ordering tendencies in Bi2212. Despite these contrasts, the gap recovers with relatively momentum-independent dynamics at all probed momenta, which shows the persistent influence of superconductivity both inside and outside the Fermi arc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا