ترغب بنشر مسار تعليمي؟ اضغط هنا

Inhomogeneous Low Frequency Spin Dynamics in La_{1.65}Eu_{0.2}Sr_{0.15}CuO_4

80   0   0.0 ( 0 )
 نشر من قبل P. Chris Hammel
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report Cu and La nuclear magnetic resonance (NMR) measurements in the title compound that reveal an inhomogeneous glassy behavior of the spin dynamics. A low temperature peak in the La spin lattice relaxation rate and the ``wipeout of Cu intensity both arise from these slow electronic spin fluctuations that reveal a distribution of activation energies. Inhomogeneous slowing of spin fluctuations appears to be a general feature of doped lanthanum cuprate.



قيم البحث

اقرأ أيضاً

We present La and Cu NMR relaxation measurements in single crystal La_{1.67}Eu_{0.2}Sr_{0.13}CuO_4. A strong peak in the La spin-lattice relaxation rate observed in the spin ordered state is well-described by the BPP mechanism[1] and arises from cont inuous slowing of electronic spin fluctuations with decreasing temperature; these spin fluctuations exhibit XY-like anisotropy in the ordered state. The spin pseudogap is enhanced by the static charge-stripe order in the LTT phase.
67 - K. Sen , P. Marsik , S. Das 2017
$mathrm{La_{1.85}Sr_{0.15}CuO_4}$/$mathrm{La_2CuO_4}$ (LSCO15/LCO) bilayers with a precisely controlled thickness of N unit cells (UCs) of the former and M UCs of the latter ([LSCO15_N/LCO_M]) were grown on (001)-oriented {slao} (SLAO) substrates wit h pulsed laser deposition (PLD). X-ray diffraction and reciprocal space map (RSM) studies confirmed the epitaxial growth of the bilayers and showed that a [LSCO15_2/LCO_2] bilayer is fully strained, whereas a [LSCO15_2/LCO_7] bilayer is already partially relaxed. The textit{in situ} monitoring of the growth with reflection high energy electron diffraction (RHEED) revealed that the gas environment during deposition has a surprisingly strong effect on the growth mode and thus on the amount of disorder in the first UC of LSCO15 (or the first two monolayers of LSCO15 containing one $mathrm{CuO_2}$ plane each). For samples grown in pure $mathrm{N_2O}$ gas (growth type-B), the first LSCO15 UC next to the SLAO substrate is strongly disordered. This disorder is strongly reduced if the growth is performed in a mixture of $mathrm{N_2O}$ and $mathrm{O_2}$ gas (growth type-A). Electric transport measurements confirmed that the first UC of LSCO15 next to the SLAO substrate is highly resistive and shows no sign of superconductivity for growth type-B, whereas it is superconducting for growth type-A. Furthermore, we found, rather surprisingly, that the conductivity of the LSCO15 UC next to the LCO capping layer strongly depends on the thickness of the latter. A LCO capping layer with 7~UCs leads to a strong localization of the charge carriers in the adjacent LSCO15 UC and suppresses superconductivity. The magneto-transport data suggest a similarity with the case of weakly hole doped LSCO single crystals that are in a so-called {{cluster-spin-glass state}}
Measurement of the current-voltage characteristics of point contacts makes it possible to study the properties of individual crystallites in a superconducting ceramic. The critical current density in the superconducting regions of the ceramic $rm La_ {1.8}Sr_{0.2}CuO_4$, with a size of the order of several tens of angstroms, is found to attain values of $10^8 A/cm^2$, which are of the same order of magnitude as the pair-breaking current density, as evaluated from the formulas of the standard theory of superconductivity.
187 - C. F. Chang , Z. Hu , Hua Wu 2009
Using Co-L_(2,3) and O-K x-ray absorption spectroscopy, we reveal that the charge ordering in La_(1.5)Sr_(0.5)CoO4 involves high spin (S=3/2) Co^2+ and low spin (S=0) Co^3+ ions. This provides evidence for the spin blockade phenomenon as a source for the extremely insulating nature of the La_(2-x)Sr_(x)CoO4 series. The associated e_g^2 and e_g^0 orbital occupation accounts for the large contrast in the Co-O bond lengths, and in turn, the high charge ordering temperature. Yet, the low magnetic ordering temperature is naturally explained by the presence of the non-magnetic (S=0) Co^3+ ions. From the identification of the bands we infer that La_(1.5)Sr_(0.5)CoO4 is a narrow band material.
We measure the spin lattice relaxation of the In(1) nuclei in the CeMIn_5 materials, extract quantitative information about the low energy spin dynamics of the lattice of Ce moments in both CeRhIn_5 and CeCoIn_5, and identify a crossover in the norma l state. Above a temperature T* the Ce lattice exhibits Kondo gas behavior characterized by local fluctuations of independently screened moments; below T* both systems exhibit a Kondo liquid regime in which interactions between the local moments contribute to the spin dynamics. Both the antiferromagnetic and superconducting ground states in these systems emerge from the Kondo liquid regime. Our analysis provides strong evidence for quantum criticality in CeCoIn_5.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا