ﻻ يوجد ملخص باللغة العربية
New Raman and incoherent neutron scattering data at various temperatures and molecular dynamic simulations in amorphous silica, are compared to obtain the Raman coupling coefficient $C(omega)$ and, in particular, its low frequency limit. This study indicates that in the $omega to 0$ limit $C(omega)$ extrapolates to a non vanishing value, giving important indications on the characteristics of the vibrational modes in disordered materials; in particular our results indicate that even in the limit of very long wavelength the local disorder implies non-regular local atomic displacements.
We report new inelastic Raman and neutron scattering spectra for glasses with different degrees of fragility; the data are compared for each sample to obtain the Raman coupling function $C(omega)$. The study indicates a general linear behaviour of th
New temperature dependent inelastic x-ray (IXS) and Raman (RS) scattering data are compared to each other and with existing inelastic neutron scattering data in vitreous silica (v-SiO_2), in the 300 - 1775 K region. The IXS data show collective propa
We report a numerical study of Anderson localization in a 2D system of non-interacting electrons with spin-orbit coupling. We analyze the scaling of the renormalized localization length for the 2D SU(2) model and estimate its $beta$-function over the
We report a numerical investigation of the fluctuations of the Lyapunov exponent of a two dimensional non-interacting disordered system. While the ratio of the mean to the variance of the Lyapunov exponent is not constant, as it is in one dimension,
We study a disordered vibrational model system, where the spring constants k are chosen from a distribution P(k) ~ 1/k above a cut-off value k_min > 0. We can motivate this distribution by the presence of free volume in glassy materials. We show that