ﻻ يوجد ملخص باللغة العربية
We discuss the occurrence of Bose-Einstein condensation in systems of noninteracting charged particles in three in one dimensions and in presence of an external magnetic field. In the one dimensional, as well as in the magnetic field cases, although not a critical temperature, a characteristic temperature can be found, corresponding to the case in which the ground state density becomes a macroscopic fraction of the total density. The case of relativistic charged scalar and vector particles is studied. The results obtainedgive support to the existence of superconductivity in extremely strong magnetic fields, and leads to the prediction of superconductive-ferromagnetic behavior in the vector field case, which might be of interest in condensed matter as well as in cosmology. Some features of the magnetization in the early universe are conjectured.
We present a novel experimental approach to Bose-Einstein condensation by increasing the particle number of the system at almost constant temperature. In particular the emergence of a new condensate is observed in multi-component F=1 spinor condensat
We present the first experimental realisation of Bose-Einstein condensation in a purely magnetic double-well potential. This has been realised by combining a static Ioffe-Pritchard trap with a time orbiting potential (TOP). The double trap can be rap
A Bose-Einstein condensate is created in a simple and robust miniature Ioffe-Pritchard trap, the so-called Z trap. This trap follows from the mere combination of a Z-shaped current carrying wire and a homogeneous bias field. The experimental procedur
Bose-Einstein condensates (BECs) are macroscopic coherent matter waves that have revolutionized quantum science and atomic physics. They are essential to quantum simulation and sensing, for example underlying atom interferometers in space and ambitio
To investigate the phenomenon of Bose-Einstein condensation in perfect crystals a hierarchy of equations for reduced density matrices that describes a thermodynamically equilibrium quantum system is employed, the hierarchy being obtained earlier by t