ترغب بنشر مسار تعليمي؟ اضغط هنا

Probability distribution of the order parameter for the 3D Ising model universality class: a high precision Monte Carlo study

125   0   0.0 ( 0 )
 نشر من قبل Maxim Tsypin
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the probability distribution P(M) of the order parameter (average magnetization) M, for the finite-size systems at the critical point. The systems under consideration are the 3-dimensional Ising model on a simple cubic lattice, and its 3-state generalization known to have remarkably small corrections to scaling. Both models are studied in a cubic box with periodic boundary conditions. The model with reduced corrections to scaling makes it possible to determine P(M) with unprecedented precision. We also obtain a simple, but remarkably accurate approximate formula describing the universal shape of P(M).



قيم البحث

اقرأ أيضاً

We study the three-dimensional Ising model at the critical point in the fixed-magnetization ensemble, by means of the recently developed geometric cluster Monte Carlo algorithm. We define a magnetic-field-like quantity in terms of microscopic spin-up and spin-down probabilities in a given configuration of neighbors. In the thermodynamic limit, the relation between this field and the magnetization reduces to the canonical relation M(h). However, for finite systems, the relation is different. We establish a close connection between this relation and the probability distribution of the magnetization of a finite-size system in the canonical ensemble.
We present a worm-type Monte Carlo study of several typical models in the three-dimensional (3D) U(1) universality class, which include the classical 3D XY model in the directed flow representation and its Villain version, as well as the 2D quantum B ose-Hubbard (BH) model with unitary filling in the imaginary-time world-line representation. From the topology of the configurations on a torus, we sample the superfluid stiffness $rho_s$ and the dimensionless wrapping probability $R$. From the finite-size scaling analyses of $rho_s$ and of $R$, we determine the critical points as $T_c ({rm XY}) =2.201, 844 ,1(5)$ and $T_c ({rm Villain})=0.333, 067, 04(7)$ and $(t/U)_c ({rm BH})=0.059 , 729 ,1(8)$, where $T$ is the temperature for the classical models, and $t$ and $U$ are respectively the hopping and on-site interaction strength for the BH model. The precision of our estimates improves significantly over that of the existing results. Moreover, it is observed that at criticality, the derivative of a wrapping probability with respect to $T$ suffers from negligible leading corrections and enables a precise determination of the correlation length critical exponent as $ u=0.671 , 83(18)$. In addition, the critical exponent $eta$ is estimated as $eta=0.038 , 53(48)$ by analyzing a susceptibility-like quantity. We believe that these numerical results would provide a solid reference in the study of classical and quantum phase transitions in the 3D U(1) universality, including the recent development of the conformal bootstrap method.
We perform large-scale Monte Carlo simulations of the classical XY model on a three-dimensional $Ltimes L times L$ cubic lattice using the graphics processing unit (GPU). By the combination of Metropolis single-spin flip, over-relaxation and parallel -tempering methods, we simulate systems up to L=160. Performing the finite-size scaling analysis, we obtain estimates of the critical exponents for the three-dimensional XY universality class: $alpha=-0.01293(48)$ and $ u=0.67098(16)$. Our estimate for the correlation-length exponent $ u$, in contrast to previous theoretical estimates, agrees with the most recent experimental estimate $ u_{rm exp}=0.6709(1)$ at the superfluid transition of $^4$He in a microgravity environment.
The Ising model S=1/2 and the S=1 model are studied by efficient Monte Carlo schemes on the (3,4,6,4) and the (3,3,3,3,6) Archimedean lattices. The algorithms used, a hybrid Metropolis-Wolff algorithm and a parallel tempering protocol, are briefly de scribed and compared with the simple Metropolis algorithm. Accurate Monte Carlo data are produced at the exact critical temperatures of the Ising model for these lattices. Their finite-size analysis provide, with high accuracy, all critical exponents which, as expected, are the same with the well known 2d Ising model exact values. A detailed finite-size scaling analysis of our Monte Carlo data for the S=1 model on the same lattices provides very clear evidence that this model obeys, also very well, the 2d Ising model critical exponents. As a result, we find that recent Monte Carlo simulations and attempts to define effective dimensionality for the S=1 model on these lattices are misleading. Accurate estimates are obtained for the critical amplitudes of the logarithmic expansions of the specific heat for both models on the two Archimedean lattices.
Using first-principle Hybrid-Monte-Carlo (HMC) simulations, we carry out an unbiased study of the competition between spin-density wave (SDW) and charge-density wave (CDW) order in the extended Hubbard model on the two dimensional hexagonal lattice a t half filling. We determine the phase diagram in the space of on-site and nearest-neighbor couplings $U$ and $V$ in the region $V<U/3$, which can be simulated without a fermion sign problem, and find that a transition from semimetal to a SDW phase occurs at sufficiently large $U$ for basically all $V$. Tracing the corresponding phase boundary from $V=0$ to the $V=U/3$ line, we find evidence for critical scaling in the Gross-Neveu universality class for the entire boundary. With rather high confidence we rule out the existence of the CDW ordered phase anywhere in the range of parameters considered. We also discuss several improvements of the HMC algorithm which are crucial to reach these conclusions, in particular the improved fermion action with exact sublattice symmetry and the complexification of the Hubbard-Stratonovich field to ensure the ergodicity of the algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا