ترغب بنشر مسار تعليمي؟ اضغط هنا

Disorder-Driven Non-Fermi-Liquid Behavior in CeRhRuSi_2

105   0   0.0 ( 0 )
 نشر من قبل Douglas E. MacLaughlin
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report measurements of the bulk magnetic susceptibility and ^{29}Si nuclear magnetic resonance (NMR) linewidth in the heavy-fermion alloy CeRhRuSi_2. The linewidth increases rapidly with decreasing temperature and reaches large values at low temperatures, which strongly suggests the wide distributions of local susceptibilities chi_j obtained in disorder-driven theories of non-Fermi-liquid (NFL) behavior. The NMR linewidths agree well with distribution functions P(chi) which fit bulk susceptibility and specific heat data. The apparent return to Fermi-liquid behavior observed below 1 K is manifested in the vanishing of P(chi) as chi to infty, suggesting the absence of strong magnetic response at low energies. Our results indicate the need for an extension of some current theories of disorder-driven NFL behavior in order to incorporate this low-temperature crossover.



قيم البحث

اقرأ أيضاً

193 - Xiao-Yong Feng , Tai-Kai Ng 2013
In this paper we study the low temperature behaviors of a system of Bose-Fermi mixtures at two dimensions. Within a self-consistent ladder diagram approximation, we show that at nonzero temperatures $Trightarrow0$ the fermions exhibit non-fermi liqui d behavior. We propose that this is a general feature of Bose-Fermi mixtures at two dimensions. An experimental signature of this new state is proposed.
The Weyl semimetallic compound Eu2Ir2O7 along with its hole doped derivatives (which is achieved by substituting trivalent Eu by divalent Sr) are investigated through transport, magnetic and calorimetric studies. The metal-insulator transition (MIT) temperature is found to get substantially reduced with hole doping and for 10% Sr doping the composition is metallic down to temperature as low as 5 K. These doped compounds are found to violate the Mott-Ioffe-Regel condition for minimum electrical conductivity and show distinct signature of non-Fermi liquid behavior at low temperature. The MIT in the doped compounds does not correlate with the magnetic transition point and Anderson-Mott type disorder induced localization may be attributed to the ground state insulating phase. The observed non-Fermi liquid behavior can be understood on the basis of disorder induced distribution of spin orbit coupling parameter which is markedly different in case of Ir4+ and Ir5+ ions.
115 - G. Cao , V. Durairaj , S. Chikara 2007
We report transport and thermodynamic properties of single-crystal SrIrO3 as a function of temperature T and applied magnetic field H. We find that SrIrO3 is a non-Fermi-liquid metal near a ferromagnetic instability, as characterized by the following properties: (1) small ordered moment but no evidence for long-range order down to 1.7 K; (2) strongly enhanced magnetic susceptibility that diverges as T or T1/2 at low temperatures, depending on the applied field; (3) heat capacity C(T,H) ~ -Tlog T that is readily amplified by low applied fields; (4) a strikingly large Wilson ratio at T< 4K; and (5) a T3/2-dependence of electrical resistivity over the range 1.7 < T < 120 K. A phase diagram based on the data implies SrIrO3 is a rare example of a stoichiometric oxide compound that exhibits non-Fermi-liquid behavior near a quantum critical point (T = 0 and H = 0.23 T).
We study how the non-Fermi-liquid nature of the overscreened multi-channel Kondo impurity model affects the response to a BCS pairing term that, in the absence of the impurity, opens a gap $Delta$. We find that non-Fermi liquid features do persist ev en at finite $Delta$: the local density of states lacks coherence peaks, the states in the continuum above the gap are unconventional, and the boundary entropy is a non-monotonic function of temperature. Even more surprisingly, we also find that the low-energy spectrum in the limit $Deltato 0$ actually does not correspond to the spectrum strictly at $Delta=0$. In particular, the $Deltato 0$ ground state is an orbitally degenerate spin-singlet, while it is an orbital singlet with a residual spin degeneracy at $Delta=0$. In addition, there are fractionalized spin-1/2 sub-gap excitations whose energy in units of $Delta$ tends towards a finite and universal value when $Deltato 0$; as if the universality of the anomalous power-law exponents that characterise the overscreened Kondo effect turned into universal energy ratios when the scale invariance is broken by $Delta ot=0$. This intriguing phenomenon can be explained by the renormalisation flow towards the overscreened fixed point and the gap cutting off the orthogonality catastrophe singularities.
Muon spin rotation experiments on a stoichiometric sample of the non-Fermi liquid (NFL) heavy-fermion compound UCu_4Pd, in which recent neutron Bragg scattering measurements are consistent with an ordered structure, indicate that the U-ion susceptibi lity is strongly inhomogeneous at low temperatures. This suggests that residual disorder dominates NFL behavior. The data also indicate a short correlation length (lesssim 1 lattice spacing) for this inhomogeneity and a rapid low-temperature U-moment relaxation rate (gtrsim 10^{12} s^{-1}), which constrain cluster-based models of NFL behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا