ﻻ يوجد ملخص باللغة العربية
We show that the exact beta-function beta(g) in the continuous 2D gPhi^{4} model possesses the Kramers-Wannier duality symmetry. The duality symmetry transformation tilde{g}=d(g) such that beta(d(g))=d(g)beta(g) is constructed and the approximate values of g^{*} computed from the duality equation d(g^{*})=g^{*} are shown to agree with the available numerical results. The calculation of the beta-function beta(g) for the 2D scalar gPhi^{4} field theory based on the strong coupling expansion is developed and the expansion of beta(g) in powers of g^{-1} is obtained up to order g^{-8}. The numerical values calculated for the renormalized coupling constant g_{+}^{*} are in reasonable good agreement with the best modern estimates recently obtained from the high-temperature series expansion and with those known from the perturbative four-loop renormalization-group calculations. The application of Cardys theorem for calculating the renormalized isothermal coupling constant g_{c} of the 2D Ising model and the related universal critical amplitudes is also discussed.
We make a detailed analysis of the spontaneous $Z_{2}$-symmetry breaking in the two dimensional real $phi^{4}$ theory with the tensor renormalization group approach, which allows us to take the thermodynamic limit easily and determine the physical ob
Critical two-point correlation functions in the continuous and lattice phi^4 models with scalar order parameter phi are considered. We show by different non-perturbative methods that the critical correlation functions <phi^n(0) phi^m(x)> are proporti
The critical behavior of d-dimensional systems with an n-component order parameter is reconsidered at (m,d,n)-Lifshitz points, where a wave-vector instability occurs in an m-dimensional subspace of ${mathbb R}^d$. Our aim is to sort out which ones of
We enumerate the cases in 2d conformal field theory where the logarithm of the reduced density matrix (the entanglement or modular hamiltonian) may be written as an integral over the energy-momentum tensor times a local weight. These include known ex
The massive field-theory approach for studying critical behavior in fixed space dimensions $d<4$ is extended to systems with surfaces.This enables one to study surface critical behavior directly in dimensions $d<4$ without having to resort to the $ep