ﻻ يوجد ملخص باللغة العربية
The Anderson transitions in a random magnetic field in three dimensions are investigated numerically. The critical behavior near the transition point is analyzed in detail by means of the transfer matrix method with high accuracy for systems both with and without an additional random scalar potential. We find the critical exponent $ u$ for the localization length to be $1.45 pm 0.09$ with a strong random scalar potential. Without it, the exponent is smaller but increases with the system sizes and extrapolates to the above value within the error bars. These results support the conventional classification of universality classes due to symmetry. Fractal dimensionality of the wave function at the critical point is also estimated by the equation-of-motion method.
The Anderson transition in three dimensions in a randomly varying magnetic flux is investigated in detail by means of the transfer matrix method with high accuracy. Both, systems with and without an additional random scalar potential are considered.
We present results on the first excited states for the random-field Ising model. These are based on an exact algorithm, with which we study the excitation energies and the excitation sizes for two- and three-dimensional random-field Ising systems wit
We study the finite-time dynamics of an initially localized wave-packet in the Anderson model on the random regular graph (RRG). Considering the full probability distribution $Pi(x,t)$ of a particle to be at some distance $x$ from the initial state a
We present a full description of the nonergodic properties of wavefunctions on random graphs without boundary in the localized and critical regimes of the Anderson transition. We find that they are characterized by two critical localization lengths:
The parallel-tempering method has been applied to numerically study the thermodynamic behavior of a three-dimensional disordered antiferromagnetic Ising model with random fields at spin concentrations corresponding to regions of both weak and strong