ﻻ يوجد ملخص باللغة العربية
The chiral optical absorption by a single vortex in a p_x pm i p_y-wave superconductor is studied theoretically. The p_x pm i p_y-wave state was recently suggested as the symmetry of the order parameter of Sr_2 Ru O_4 superconductor. Due to the violation of time reversal symmetry, there are two types of vortices whose winding orientation is the same or opposite to the angular momentum of the Cooper pair. In a real material domains with p_x pm i p_y-wave states are expected. However, optical absorption of circular polarized light depends only on the winding of the vortex and has a low energy absorption peak which results in dichroism. Dichroism occurs if superconductivity is realized on a single Fermi surface sheet. However, in the case of several Fermi surface sheets dichroism may disappear, if the both types of carriers are present, electron-like and hole-like. Therefore chiral optical absorption is a possible experiment to detect the orbital dependent superconductivity which was suggested as the superconducting state of Sr_2 Ru O_4.
Quasiparticle states around a single vortex in a $p_xpm i p_y$-wave superconductor are studied on the basis of the Bogoliubov-de Gennes (BdG) theory, where both charge and current screenings are taken into account. Due to the violation of time revers
The electronic states near a surface or a domain wall in the p_x pm i p_y -wave superconductor are studied. This state has been recently suggested as the superconducting state of Sr_2 Ru O_4. The p_x pm i p_y-wave paring state breaks the time reversa
The study of superconductivity with unconventional order is complicated in condensed matter systems by their extensive complexity. Optical lattices with their exceptional precision and control allow one to emulate superfluidity avoiding many of the c
The electronic states near a surface or a domain wall in the p-wave superconductor are studied for the order parameter of the form p_xpm i p_y-wave, which is a unitary odd-parity state with broken time-reversal symmetry. This state has been recently
Much excitement surrounds the possibility that strontium ruthenate exhibits chiral p-wave superconducting order. Such order would be a solid state analogue of the A phase of He-3, with the potential for exotic physics relevant to quantum computing. W