ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunneling into fractional quantum Hall liquids

53   0   0.0 ( 0 )
 نشر من قبل Kenichiro Imura
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ken-ichiro Imura




اسأل ChatGPT حول البحث

Motivated by the recent experiment by Grayson et.al., we investigate a non-ohmic current-voltage characteristics for the tunneling into fractional quantum Hall liquids. We give a possible explanation for the experiment in terms of the chiral Tomonaga-Luttinger liquid theory. We study the interaction between the charge and neutral modes, and found that the leading order correction to the exponent $alpha$ $(Isim V^alpha)$ is of the order of $sqrt{epsilon}$ $(epsilon=v_n/v_c)$, which reduces the exponent $alpha$. We suggest that it could explain the systematic discrepancy between the observed exponents and the exact $alpha =1/ u$ dependence.



قيم البحث

اقرأ أيضاً

138 - Ken-Ichiro Imura 1999
Effects of backward scattering between fractional quantum Hall (FQH) edge modes are studied. Based on the edge-state picture for hierarchical FQH liquids, we discuss the possibility of the transitions between different plateaux of the tunneling condu ctance $G$. We find a selection rule for the sequence which begins with a conductance $G=m/(mppm 1)$ ($m$: integer, $p$: even integer) in units of $e^2/h$. The shot-noise spectrum as well as the scaling behavior of the tunneling current is calculated explicitly.
The physics of a junction composed of a normal metal, quantum dot and 2D topological insulator (in a quantum spin Hall state) is elucidated. It maifests a subtle combination of Kondo correlations and quantum spin Hall edge states moving on the opposi te sides of the 2D topological insulator. In a narrow strip geometry these edge states interact and a gap opens in the edge state spectrum. Consequently, Kondo screening is less effective and that affects electron transport through the junction. Specifically, when edge state coupling is strong enough, the tunneling differential conductance develops a dip at zero temperature instead of the standard zero bias Kondo peak.
101 - Chao Han , Zhao Liu 2021
We investigate the disorder-driven phase transitions in bosonic fractional quantum Hall liquids at filling factors $f=1/2$ and $f=1$ in the lowest Landau level. We use the evolution of ground-state entanglement entropy, fidelity susceptibility, and H all conductance with the increasing of disorder strength to identify the underlying phase transitions. The critical disorder strengths obtained from these different quantities are consistent with each other, validating the reliability of our numerical calculations based on exact diagonalization. At $f=1/2$, we observe a clear transition from the bosonic Laughlin state to a trivial insulating phase. At $f=1$, we identify a direct phase transition from the non-Abelian bosonic Moore-Read state to a trivial insulating phase, although some signs of a disorder-induced intermediate fractional quantum Hall phase were recently reported for the $f=5/2$ fermionic Moore-Read cousin.
Domain walls in fractional quantum Hall ferromagnets are gapless helical one-dimensional channels formed at the boundaries of topologically distinct quantum Hall (QH) liquids. Na{i}vely, these helical domain walls (hDWs) constitute two counter-propag ating chiral states with opposite spins. Coupled to an s-wave superconductor, helical channels are expected to lead to topological superconductivity with high order non-Abelian excitations. Here we investigate transport properties of hDWs in the $ u=2/3$ fractional QH regime. Experimentally we found that current carried by hDWs is substantially smaller than the prediction of the na{i}ve model. Luttinger liquid theory of the system reveals redistribution of currents between quasiparticle charge, spin and neutral modes, and predicts the reduction of the hDW current. Inclusion of spin-non-conserving tunneling processes reconciles theory with experiment. The theory confirms emergence of spin modes required for the formation of fractional topological superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا