ﻻ يوجد ملخص باللغة العربية
A possibility of holon (boson) pair condensation is explored for hole doped high T_c cuprates, by using the U(1) slave-boson representation of the t-J Hamiltonian with the inclusion of hole-hole repulsion. A phase diagram of the hole doped high T_c cuprates is deduced by allowing both the holon pairing and spinon pairing. It is shown that the spin gap size remains nearly unchanged below the holon pair condensation temperature. We find that the s-wave holon pairing under the condition of d-wave singlet pairing is preferred, thus allowing d-wave hole pairing.
We have studied the influence of disorder induced by electron irradiation on the normal state resistivities $rho(T)$ of optimally and underdoped YBa2CuOx single crystals, using pulsed magnetic fields up to 60T to completely restore the normal state.
The experimentally measured phase diagram of cuprate superconductors in the temperature-applied magnetic field plane illuminates key issues in understanding the physics of these materials. At low temperature, the superconducting state gives way to a
A general constructive procedure is presented for analyzing magnetic instabilities in two-dimensional materials, in terms of [predominantly] double nesting, and applied to Hartree-Fock HF+RPA and Gutzwiller approximation GA+RPA calculations of the Hu
Cuprate superconductors have long been known to exhibit an energy gap that persists high above the superconducting transition temperature ($T_c$). Debate has continued now for decades as to whether it is a precursor superconducting gap or a pseudogap
We present a study of the in-plane and out-of-plane magnetoresistance (MR) in heavily-underdoped, antiferromagnetic YBa_{2}Cu_{3}O_{6+x}, which reveals a variety of striking features. The in-plane MR demonstrates a d-wave-like anisotropy upon rotatin