ﻻ يوجد ملخص باللغة العربية
We report quantum Hall experiments on the plateau-insulator transition in a low mobility In_{.53} Ga_{.47} As/InP heterostructure. The data for the longitudinal resistance rho_{xx} follow an exponential law and we extract a critical exponent kappa= .55 pm .05 which is slightly different from the established value kappa = .42 pm .04 for the plateau transitions. Upon correction for inhomogeneity effects, which cause the critical conductance sigma_{xx}^* to depend marginally on temperature, our data indicate that the plateau-plateau and plateau- insulator transitions are in the same universality class.
The temperature dependence of the magneto-conductivity in graphene shows that the widths of the longitudinal conductivity peaks, for the N=1 Landau level of electrons and holes, display a power-law behavior following $Delta u propto T^{kappa}$ with
Using different experimental techniques we examine the dynamical scaling of the quantum Hall plateau transition in a frequency range f = 0.1-55 GHz. We present a scheme that allows for a simultaneous scaling analysis of these experiments and all othe
The phase transitions from one plateau to the next plateau or to an insulator in quantum Hall and quantum anomalous Hall (QAH) systems have revealed universal scaling behaviors. A magnetic-field-driven quantum phase transition from a QAH insulator to
We report a current scaling study of a quantum phase transition between a quantum anomalous Hall insulator and a trivial insulator on the surface of a heterostructure film of magnetic topological insulators. The transition was observed by tilting the
We demonstrate a new method for locally probing the edge states in the quantum Hall regime utilizing a side coupled quantum dot positioned at an edge of a Hall bar. By measuring the tunneling of electrons from the edge states into the dot, we acquire