ﻻ يوجد ملخص باللغة العربية
Multiresolution analyses based upon interpolets, interpolating scaling functions introduced by Deslauriers and Dubuc, are particularly well-suited to physical applications because they allow exact recovery of the multiresolution representation of a function from its sample values on a finite set of points in space. We present a detailed study of the application of wavelet concepts to physical problems expressed in such bases. The manuscript describes algorithms for the associated transforms which, for properly constructed grids of variable resolution, compute correctly without having to introduce extra grid points. We demonstrate that for the application of local homogeneous operators in such bases, the non-standard multiply of Beylkin, Coifman and Rokhlin also proceeds exactly for inhomogeneous grids of appropriate form. To obtain less stringent conditions on the grids, we generalize the non-standard multiply so that communication may proceed between non-adjacent levels. The manuscript concludes with timing comparisons against naive algorithms and an illustration of the scale-independence of the convergence rate of the conjugate gradient solution of Poissons equation using a simple preconditioning, suggesting that this approach leads to an O(n) solution of this equation.
We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energie
This paper develops the use of wavelets as a basis set for the solution of physical problems exhibiting behavior over wide-ranges in length scale. In a simple diagrammatic language, this article reviews both the mathematical underpinnings of wavelet
A proposal for a magnetic quantum processor that consists of individual molecular spins coupled to superconducting coplanar resonators and transmission lines is carefully examined. We derive a simple magnetic quantum electrodynamics Hamiltonian to de
Daubechies wavelets are a powerful systematic basis set for electronic structure calculations because they are orthogonal and localized both in real and Fourier space. We describe in detail how this basis set can be used to obtain a highly efficient
The emergence of ultra-fast X-ray free-electron lasers opens the possibility of imaging single molecules in the gas phase at atomic resolution. The main disadvantage of this imaging technique is the unknown orientation of the sample exposed to the X-