ﻻ يوجد ملخص باللغة العربية
In this review we discuss, from a unified point of view, a variety of Monte Carlo methods used to solve eigenvalue problems in statistical mechanics and quantum mechanics. Although the applications of these methods differ widely, the underlying mathematics is quite similar in that they are stochastic implementations of the power method. In all cases, optimized trial states can be used to reduce the errors of Monte Carlo estimates.
This article presents differential equations and solution methods for the functions of the form $Q(x) = F^{-1}(G(x))$, where $F$ and $G$ are cumulative distribution functions. Such functions allow the direct recycling of Monte Carlo samples from one
We study Quantum Gravity effects on the density of states in statistical mechanics and its implications for the critical temperature of a Bose Einstein Condensate and fraction of bosons in its ground state. We also study the effects of compact extra
In this paper we construct a noncommutative space of ``pointed Drinfeld modules that generalizes to the case of function fields the noncommutative spaces of commensurability classes of Q-lattices. It extends the usual moduli spaces of Drinfeld module
A framework for statistical-mechanical analysis of quantum Hamiltonians is introduced. The approach is based upon a gradient flow equation in the space of Hamiltonians such that the eigenvectors of the initial Hamiltonian evolve toward those of the r
An interesting connection between the Regge theory of scattering, the Veneziano amplitude, the Lee-Yang theorems in statistical mechanics and nonextensive Renyi entropy is addressed. In this scheme the standard entropy and the Renyi entropy appear to