ﻻ يوجد ملخص باللغة العربية
We present a new model of sequential adsorption in which the adsorbing particles experience dipolar interactions. We show that in the presence of these long-range interactions, highly ordered structures in the adsorbed layer may be induced at low temperatures. The new phenomenology manifests through significant variations of the pair correlation function and the jamming limit, with respect to the case of noninteracting particles. Our study could be relevant in understanding the adsorption of magnetic colloidal particles in presence of a magnetic field.
A class of non-local contact processes is introduced and studied using mean-field approximation and numerical simulations. In these processes particles are created at a rate which decays algebraically with the distance from the nearest particle. It i
Typical biomolecular systems such as cellular membranes, DNA, and protein complexes are highly charged. Thus, efficient and accurate treatment of electrostatic interactions is of great importance in computational modelling of such systems. We have em
We study the stochastic dynamics of an electrolyte driven by a uniform external electric field and show that it exhibits generic scale invariance despite the presence of Debye screening. The resulting long-range correlations give rise to a Casimir-li
We use a computational model to investigate the emergence of interaction forces between pairs of intruders in a horizontally vibrated granular fluid. The time evolution of a pair of particles shows a maximum of the likelihood to find the pair at cont
Many-body localization (MBL) behavior is analyzed {in an extended Bose-Hubbard model with quasiperiodic infinite-range interactions. No additional disorder is present. Examining level statistics and entanglement entropy of eigenstates we show that a