ﻻ يوجد ملخص باللغة العربية
Resistance, magnetoresistance and their temperature dependencies have been investigated in the 2D hole gas at a [001] p-GaAs/Al$_{0.5}$Ga$_{0.5}$As heterointerface under [110] uniaxial compression. Analysis performed in the frame of hole-hole scattering between carriers in the two spin splitted subbands of the ground heavy hole state indicates, that h-h scattering is strongly suppressed by uniaxial compression. The decay time $tau_{01}$ of the relative momentum reveals 4.5 times increase at a uniaxial compression of 1.3 kbar.
We describe a technique to fabricate closely spaced electron-hole bilayers in GaAs-AlGaAs heterostructures. Our technique incorporates a novel method for making shallow contacts to a low density ($<10^{11}cm^{-2}$) 2-dimensional electron gas (2DEG) t
It is experimentally shown that the pressure applied along the twofold symmetry axis of a heterostructure with a wide GaAs/AlGaAs quantum well leads to considerable modification of the polariton reflectance spectra. This effect is treated as the stre
Vertical heterostructures combining different layered materials offer novel opportunities for applications and fundamental studies of collective behavior driven by inter-layer Coulomb coupling. Here we report heterostructures comprising a single-laye
We study the Zeeman spin-splitting in hole quantum wires oriented along the $[011]$ and $[01bar{1}]$ crystallographic axes of a high mobility undoped (100)-oriented AlGaAs/GaAs heterostructure. Our data shows that the spin-splitting can be switched `
Ohmic contacts to a two-dimensional electron gas (2DEG) in GaAs/AlGaAs heterostructures are often realized by annealing of AuGe/Ni/Au that is deposited on its surface. We studied how the quality of this type of ohmic contact depends on the annealing