ﻻ يوجد ملخص باللغة العربية
We study the combined effects of electrostatic and hydrodynamic interactions (HI) on the short-time dynamics of charge-stabilized colloidal spheres. For this purpose, we calculate the translational and the rotational self-diffusion coefficients, $D^t_s$ and $D^r_s$, as function of volume fraction $phi$ for various values of the effective particle charge $Z$ and various concentrations $n_s$ of added 1--1 electrolyte. Our results show that the self-diffusion coefficients in deionized suspensions are less affected by HI than in suspensions with added electrolyte. For very large $n_s$, we recover the well-known results for hard spheres, i.e. a linear $phi$-dependence of $D^t_s$ and $D^r_s$ at small $phi$. In contrast, for deionized charged suspensions at small $phi$, we observe the interesting non-linear scaling properties $D^t_spropto1-a_tphi^{4/3}$ and $D^r_spropto 1-a_rphi^2$. The coefficients $a_t$ and $a_r$ are found to be nearly independent of $Z$. The qualitative differences between the dynamics of charged and uncharged particles can be well explained in terms of an effective hard sphere (EHS) model.
The far-from-equilibrium dynamics of glassy systems share important phenomenological traits. A transition is generally observed from a time-homogeneous dynamical regime to an aging regime where physical changes occur intermittently and, on average, a
Dielectric particles in weakly conducting fluids rotate spontaneously when subject to strong electric fields. Such Quincke rotation near a plane electrode leads to particle translation that enables physical models of active matter. Here, we show that
We report experiments that show rapid crystallization of colloids tethered to an oil-water interface in response to laser illumination. This light-induced transition is due to a combination of long-ranged thermophoretic pumping and local optical bind
The dynamics of active colloids is very sensitive to the presence of boundaries and interfaces which therefore can be used to control their motion. Here we analyze the dynamics of active colloids adsorbed at a fluid-fluid interface. By using a mesosc
We report simulations on the homogeneous liquid-fcc nucleation of charged colloids for both low and high contact energy values. As a precursor for crystal formation, we observe increased local order at the position where the crystal will form, but no