ﻻ يوجد ملخص باللغة العربية
We measured the reflectivity of a single crystal of FeSi from the far-infrared to the visible region (50-20000 wavenumber), varying the temperature between 4 and 300 K. The optical conductivity function was obtained via Kramers-Kronig analysis. We observed a dirty metal-like behavior at room temperature and the opening of a gap of 70 meV at low temperature. The results of a group theoretical analysis of the lattice vibrational modes are presented and compared to the experimental data. Of the five optical phonons expected for this material only four have been observed in the far-infrared region.
From an investigation of the optical conductivity of FeSi single crystals using FTIR spectroscopy in the frequency range from 30 to 20000 wavenumbers we conclude that the transverse effective charge of the Fe and Si ions is approximately 4e. Of the f
Condensed matter systems have now become a fertile ground to discover emerging topological quasi-particles with symmetry protected modes. While many studies have focused on Fermionic excitations, the same conceptual framework can also be applied to b
Phonon dispersion of detwinned NiO is measured using inelastic x-ray scattering. It is found that, near the zone center, the energy of the transverse optical phonon mode polarized parallel to the antiferromagnetic order is ~1 meV lower than that of t
We investigate ultrafast dynamics from photoinduced reflectivity of Sr2RhO4 by using femtosecond near-infrared pulses. We observe a clear temperature-dependent anomaly in its electronic dynamics which slows down below 160 K. In addition, coherent osc
The reflectivity of single-crystalline CoO has been studied by optical spectroscopy for wave numbers ranging from 100 to 28,000wn and for temperatures 8 $< T <$ 325 K@. A splitting of the cubic IR-active phonon mode on passing the antiferromagnetic p