Bose-Einstein condensation of finite number of confined particles


الملخص بالإنكليزية

The partition function and specific heat of a system consisting of a finite number of bosons confined in an external potential are calculated in canonical ensemble. Using the grand partition function as the generating function of the partition function, an iterative scheme is established for the calculation of the partition function of system with an arbitrary number of particles. The scheme is applied to finite number of bosons confined in isotropic and anisotropic parabolic traps and in rigid boxes. The specific heat as a function of temperature is studied in detail for different number of particles, different degrees of anisotropy, and different spatial dimensions. The cusp in the specific heat is taken as an indication of Bose-Einstein condensation (BEC).It is found that the results corresponding to a large number of particles are approached quite rapidly as the number of bosons in the system increases. For large number of particles, results obtained within our iterative scheme are consistent with those of the semiclassical theory of BEC in an external potential based on the grand canonical treatment.

تحميل البحث