ﻻ يوجد ملخص باللغة العربية
We obtained the analog of the Luttinger relation for a commensurate spin-density-wave state. We show that while the relation between the area of the occupied states and the density of particles gets modified in a simple and predictable way when the system becomes ordered, a perturbative consideration of the Luttinger theorem does not work due to the presence of an anomaly similar to the chiral anomaly in quantum electrodynamics.
Electron- and phonon spectral functions of the one-dimensional, spinless-fermion Holstein model at half filling are calculated in the four distinct regimes of the phase diagram, corresponding to an attractive or repulsive Luttinger liquid at weak ele
Ferromagnetic (FM) and incommensurate spin-density wave (ISDW) states are an unusual set of competing magnetic orders that are seldom observed in the same material without application of a polarizing magnetic field. We report, for the first time, the
An interacting spinless fermion wire coupled to a three-dimensional (3D) semiconducting substrate is approximated by a narrow ladder model (NLM) with varying number of legs. We compute density distributions, gaps, charge-density-wave (CDW) order para
We report on a thorough optical investigation of BaFe$_2$As$_2$ over a broad spectral range and as a function of temperature, focusing our attention on its spin-density-wave (SDW) phase transition at $T_{SDW}=135$ K. While BaFe$_2$As$_2$ remains meta
Magnetoresistance measurements on the quasi one-dimensional organic conductor (TMTSF)_2PF_6 performed in magnetic fields B up to 16T, temperatures T down to 0.12K and under pressures P up to 14kbar have revealed new phases on its P-B-T phase diagram.