ﻻ يوجد ملخص باللغة العربية
We study conductance fluctuations in a two-dimensional electron gas as a function of chemical potential (or gate voltage) from the strongly insulating to the metallic regime. Power spectra of the fluctuations decay with two distinct exponents (1/v_l and 1/v_h). For conductivity $sigmasim 0.1 e^{2}/h$, we find a third exponent (1/v_i) in the shortest samples, and non-monotonic dependence of v_i and v_l on sigma. We study the dependence of v_i, v_l, v_h, and the variances of corresponding fluctuations on sigma, sample size, and temperature. The anomalies near $sigmasimeq 0.1 e^{2}/h$ indicate that the dielectric response and screening length are critically behaved, i.e. that Coulomb correlations dominate the physics.
Measurements of conductance $G$ on short, wide, high-mobility Si-MOSFETs reveal both a two-dimensional metal-insulator transition (MIT) at moderate temperatures (1 $<~ T <$ 4~K) and mesoscopic fluctuations of the conductance at low temperatures ($T~
We explore the scaling description for a two-dimensional metal-insulator transition (MIT) of electrons in silicon. Near the MIT, $beta_{T}/p = (-1/p)d(ln g)/d(ln T)$ is universal (with $p$, a sample dependent exponent, determined separately; $g$--con
We perform combined resistivity and compressibility studies of two-dimensional hole and electron systems which show the apparent metal-insulator transition - a crossover in the sign of dR/dT with changing density. No thermodynamic anomalies have been
Reports of metallic behavior in two-dimensional (2D) systems such as high mobility metal-oxide field effect transistors, insulating oxide interfaces, graphene, and MoS2 have challenged the well-known prediction of Abrahams, et al. that all 2D systems
We introduce an elementary model for the electrostatic self-consistent potential in a two-dimensional electron gas. By considering the perpendicular degree of freedom arising from the electron tunneling out of the system plane, we predict a threshold