ﻻ يوجد ملخص باللغة العربية
The profile of a critical hole in an undercooled wetting layer is determined by the saddle-point equation of a standard interface Hamiltonian supported by convenient boundary conditions. It is shown that this saddle-point equation can be mapped onto an autonomous dynamical system in a three-dimensional phase space. The corresponding flux has a polynomial form and in general displays four fixed points, each with different stability properties. On the basis of this picture we derive the thermodynamic behaviour of critical holes in three different nucleation regimes of the phase diagram.
Recent experimental data for the complete wetting behavior of pure 4He and of 3He-4He mixtures exposed to solid substrates show that there is a change of the corresponding film thicknesses L upon approaching thermodynamically the lambda-transition an
An ultralow-temperature binary mixture of Bose-Einstein condensates adsorbed at an optical wall can undergo a wetting phase transition in which one of the species excludes the other from contact with the wall. Interestingly, while hard-wall boundary
The excess adsorption $Gamma $ in two-dimensional Ising strips $(infty times L)$ subject to identical boundary fields, at both one-dimensional surfaces decaying in the orthogonal direction $j$ as $-h_1j^{-p}$, is studied for various values of $p$ and
A simple one-dimensional microscopic model of the depinning transition of an interface from an attractive hard wall is introduced and investigated. Upon varying a control parameter, the critical behaviour observed along the transition line changes fr
We study the effect of the composition of the genetic sequence on the melting temperature of double stranded DNA, using some simple analytically solvable models proposed in the framework of the wetting problem. We review previous work on disorder