ﻻ يوجد ملخص باللغة العربية
We study the kinetics of nonlinear irreversible fragmentation. Here fragmentation is induced by interactions/collisions between pairs of particles, and modelled by general classes of interaction kernels, and for several types of breakage models. We construct initial value and scaling solutions of the fragmentation equations, and apply the non-vanishing mass flux criterion for the occurrence of shattering transitions. These properties enable us to determine the phase diagram for the occurrence of shattering states and of scaling states in the phase space of model parameters.
More and more works deal with statistical systems far from equilibrium, dominated by unidirectional stochastic processes augmented by rare resets. We analyze the construction of the entropic distance measure appropriate for such dynamics. We demonstr
Coagulation and fragmentation (CF) is a fundamental process by which particles attach to each other to form clusters while existing clusters break up into smaller ones. It is a ubiquitous process that plays a key role in many physical and biological
The thermodynamics of the discrete nonlinear Schrodinger equation in the vicinity of infinite temperature is explicitly solved in the microcanonical ensemble by means of large-deviation techniques. A first-order phase transition between a thermalized
The solutions of the one-dimensional homogeneous nonlinear Boltzmann equation are studied in the QE-limit (Quasi-Elastic; infinitesimal dissipation) by a combination of analytical and numerical techniques. Their behavior at large velocities differs q
We discuss the zero-temperature hydrodynamics equations of bosonic and fermionic superfluids and their connection with generalized Gross-Pitaevskii and Ginzburg-Landau equations through a single superfluid nonlinear Schrodinger equation.