ﻻ يوجد ملخص باللغة العربية
Linearly polarized spectra of far-infrared (IR) transmission in HoMn2O5 multiferroic single crystals have been studied in the frequency range between 8.5 and 105 cm-1 and for temperatures between 5 K and 300 K. Polarization of IR-active excitations depends on the crystallographic directions in HoMn2O5 and is sensitive to the magnetic phase transitions. We attribute some of the infrared-active excitations to electric-dipole transitions between ligand-field split states of Ho3+ ions. For light polarization along crystalline b-axis, the oscillator strength of electric dipoles at low frequencies (10.5, 13, and 18 cm-1) changes significantly at the commensurate-incommensurate antiferromagnetic phase transition at T3 = 19 K. This effect shows a strong correlation with the pronounced steps of the b-directional static dielectric function. We propose that the ligand field (LF) on Ho3+ connects the magnetism and dielectric properties of this compound through coupling with the Mn spin structure. We comment on the possibility for composite excitations of magnons and excited LF states.
Detailed spin-wave spectra of magneto-electric LiNiPO4 have been measured by neutron scattering at low temperatures in the commensurate (C) antiferromagnetic (AF) phase with ordering temperature 20.8 K. An anomalous low-energy mode is observed at the
We present calculations of the magnetic ground state of Cs_2CuCl_4 in an applied magnetic field, with the aim of understanding the commensurately ordered state that has been discovered in recent experiments. This layered material is a realization of
Cubic spinel GeNi2O4 exhibits intriguing magnetic properties with two successive antiferromagnetic phase transitions (TN1 12.1 and TN2 11.4 K) with the absence of any structural transition. We have performed detailed heat capacity and magnetic measur
We report low-energy inelastic neutron scattering data of the paramagnetic (PM) to hidden-order (HO) phase transition at $T_0=17.5,{rm K}$ in URu$_2$Si$_2$. While confirming previous results for the HO and PM phases, our data reveal a pronounced wave
The zero temperature phase diagram of the mono-axial chiral helimagnet in the magnetic field plane formed by the components parallel and perpendicular to the helical axis is thoroughly analyzed. The nature of the transition to the commensurate state