ﻻ يوجد ملخص باللغة العربية
Zero differential resistance state is found in response to direct current applied to 2D electron systems at strong magnetic field and low temperatures. Transition to the state is accompanied by sharp dip of negative differential resistance, which occurs above threshold value $I_{th}$ of the direct current. The state depends significantly on the temperature and is not observable above several Kelvins. Additional analysis shows lack of the linear stability of the 2D electron systems at $I>I_{th}$ and inhomogeneous, non-stationary pattern of the electric current in the zero differential resistance state. We suggest that the dc bias induced redistribution of the 2D electrons in energy space is the dominant mechanism leading to the new electron state.
High-mobility 2D electron systems in a perpendicular magnetic field exhibit zero resistance states (ZRS) when driven with microwave radiation. We study the nonequilibrium phase transition into this ZRS using phenomenological equations of motion to de
Effect of dc electric field on transport of highly mobile 2D electrons is studied in wide GaAs single quantum wells placed in titled magnetic fields. The study shows that in perpendicular magnetic field resistance oscillates due to electric field ind
Magnetic barriers in two-dimensional electron gases are shifted in B space by homogeneous, perpendicular magnetic fields. The magnetoresistance across the barrier shows a characteristic asymmetric dip in the regime where the polarity of the homogeneo
We present a theory of the phonon-assisted nonlinear dc transport of 2D electrons in high Landau levels. The nonlinear dissipative resistivity displays quantum magneto-oscillations governed by two parameters which are proportional to the Hall drift v
The non-linear zero-differential resistance state (ZDRS) that occurs for highly mobile two-dimensional electron systems in response to a dc bias in the presence of a strong magnetic field applied perpendicular to the electron plane is suppressed and