ﻻ يوجد ملخص باللغة العربية
Continuous time random walks (CTRW) on finite arbitrarily inhomogeneous chains are studied. By introducing a technique of counting all possible trajectories, we derive closed-form solutions in Laplace space for the Greens function and for the first passage time probability density function (PDF) for nearest neighbor CTRWs in terms of the input waiting time PDFs. These solutions are also the Laplace space solutions of the generalized master equation (GME). Moreover, based on our counting technique, we introduce the adaptor function for expressing higher order propagators (joint PDFs of time-position variables) for CTRWs in terms of Greens functions. Using the derived formulae, an escape problem from a biased chain is considered.
We introduce a heterogeneous continuous time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environmen
The continuous-time random walk (CTRW) is a pure-jump stochastic process with several applications in physics, but also in insurance, finance and economics. A definition is given for a class of stochastic integrals driven by a CTRW, that includes the
We investigate the effects of markovian resseting events on continuous time random walks where the waiting times and the jump lengths are random variables distributed according to power law probability density functions. We prove the existence of a n
The usual development of the continuous time random walk (CTRW) assumes that jumps and time intervals are a two-dimensional set of independent and identically distributed random variables. In this paper we address the theoretical setting of non-indep
A cornerstone of modern polymer physics is the `Flory ideality hypothesis which states that a chain in a polymer melt adopts `ideal random-walk-like conformations. Here we revisit theoretically and numerically this pivotal assumption and demonstrate