ﻻ يوجد ملخص باللغة العربية
We present an ab initio study of pure and doped TiO2 in the rutile and anatase phases. The main purpose of this work is to determine the role played by different defects and different crystal structures in the appearance of magnetic order. The calculations were performed for varying impurity and vacancy concentrations in both TiO2 structures. For Co impurities the local magnetic moment remained almost independent of the concentration and distribution while for Cu this is not the case, there is magnetism for low concentrations that disappears for the higher ones. Impurity-impurity interactions in both structures favor linear ordering of them. Magnetism in un-doped samples appears for certain vacancy concentrations and structural strain.
Fine powders of micron- and submicron-sized particles of undoped Cu2O semiconductor, with three different sizes and morphologies have been synthesized by different chemical processes. These samples include nanospheres 200 nm in diameter, octahedra of
We perform a theoretical study of the magnetism induced in transition metal dioxides ZrO2 and TiO2 by substitution of the cation by a vacancy or an impurity from the groups 1A or 2A of the periodic table, where the impurity is either K or Ca. In the
The influence of dilute impurities on the structure of a fluid solvent is investigated theoretically. General arguments, which do not rely on particular models, are used to derive an extension of the Ornstein-Zernike form for the solvent structure fa
The effect of electronic interactions in graphene with vacancies or resonant scatterers is investigated. We apply dynamical mean-field theory in combination with quantum Monte Carlo simulations, which allow us to treat non-perturbatively quantum fluc
We report the structural and magnetic characterizations of Ba3TeCo3P2O14, Pb3TeCo3P2O14, and Pb3TeCo3V2O14, compounds that are based on the mineral Dugganite, which is isostructural to Langasites. The magnetic part of the structure consists of layers