ترغب بنشر مسار تعليمي؟ اضغط هنا

Different W cluster deposition regimes in pulsed laser ablation observed by in situ Scanning Tunneling Microscopy

125   0   0.0 ( 0 )
 نشر من قبل Carlo Spartaco Casari
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on how different cluster deposition regimes can be obtained and observed by in situ Scanning Tunneling Microscopy (STM) by exploiting deposition parameters in a pulsed laser deposition (PLD) process. Tungsten clusters were produced by nanosecond Pulsed Laser Ablation in Ar atmosphere at different pressures and deposited on Au(111) and HOPG surfaces. Deposition regimes including cluster deposition-diffusion-aggregation (DDA), cluster melting and coalescence and cluster implantation were observed, depending on background gas pressure and target-to-substrate distance which influence the kinetic energy of the ablated species. These parameters can thus be easily employed for surface modification by cluster bombardment, deposition of supported clusters and growth of films with different morphologies. The variation in cluster mobility on different substrates and its influence on aggregation and growth mechanisms has also been investigated.



قيم البحث

اقرأ أيضاً

To visualize the topography of thin oxide films during growth, thereby enabling to study its growth behavior quasi real-time, we have designed and integrated an atomic force microscope (AFM) in a pulsed laser deposition (PLD) vacuum setup. The AFM sc anner and PLD target are integrated in a single support frame, combined with a fast sample transfer method, such that in-situ microscopy can be utilized after subsequent deposition pulses. The in-situ microscope can be operated from room temperature (RT) up to 700$^circ$C and at (process) pressures ranging from the vacuum base pressure of 10$^{-6}$ mbar up to 1 mbar, typical PLD conditions for the growth of oxide films. The performance of this instrument is demonstrated by resolving unit cell height surface steps and surface topography under typical oxide PLD growth conditions.
84 - A. Heinrich , B. Renner , R. Lux 2003
Cu2Ta4O12 (CTaO) thin films were successfully deposited on Si(100) substrates by pulsed-laser deposition technique. The crystalline structure and the surface morphology of the CTaO thin films were strongly affected by substrate temperature, oxygen pr essure and target - substrate distance. In general during deposition of CTaO the formation of a Ta2O5 phase appeared, on which CTaO grew with different orientations. We report on the experimental set-up, details for film deposition and the film properties determined by SEM, EDX and XRD.
The authors report in situ Auger electron spectroscopy (AES) of the surfaces of complex oxides thin films grown by pulsed laser deposition (PLD). The authors demonstrate the utility of the technique in studying chemical composition by collecting char acteristic Auger spectra of elements from samples such as complex oxide thin films and single crystals as well as metal foils. In the case of thin films, AES studies can be performed with single unit cell precision by monitoring thickness during deposition with reflection high energy electron diffraction (RHEED). The authors address some of the challenges in achieving in situ and real time AES studies on complex oxide thin films grown by PLD. Sustained layer-by-layer PLD growth of a CaTiO3/LaMnO3 superlattice allows depth-resolved chemical composition analysis during the growth process. The evolution of the Auger spectra of the elements from individual layers were used to perform chemical analysis with monolayer-depth resolution.
Tunneling magnetoresistance (TMR) in a vertical manganite junction was investigated by low-temperature scanning laser microscopy (LTSLM) allowing to determine the local relative magnetization M orientation of the two electrodes as a function of magni tude and orientation of the external magnetic field H. Sweeping the field amplitude at fixed orientation revealed magnetic domain nucleation and propagation in the junction electrodes. For the high-resistance state an almost single-domain antiparallel magnetization configuration was achieved, while in the low-resistance state the junction remained in a multidomain state. Calculated resistance $R_mathrm{calc}(H)$ based on the local M configuration obtained by LTSLM is in quantitative agreement with R(H) measured by magnetotransport.
High quality Van der Waals chalcogenides are important for phase change data storage, thermoelectrics, and spintronics. Using a combination of statistical design of experiments and density functional theory, we clarify how the out-of-equilibrium van der Waals epitaxial deposition methods can improve the crystal quality of Sb2Te3 films. We compare films grown by radio frequency sputtering and pulsed laser deposition (PLD). The growth factors that influence the crystal quality for each method are different. For PLD grown films a thin amorphous Sb2Te3 seed layer most significantly influences the crystal quality. In contrast, the crystalline quality of films grown by sputtering is rather sensitive to the deposition temperature and less affected by the presence of a seed layer. This difference is somewhat surprising as both methods are out-of-thermal-equilibrium plasma-based methods. Non-adiabatic quantum molecular dynamics simulations show that this difference originates from the density of excited atoms in the plasma. The PLD plasma is more intense and with higher energy than that used in sputtering, and this increases the electronic temperature of the deposited atoms, which concomitantly increases the adatom diffusion lengths in PLD. In contrast, the adatom diffusivity is dominated by the thermal temperature for sputter grown films. These results explain the wide range of Sb2Te3 and superlattice crystal qualities observed in the literature. These results indicate that, contrary to popular belief, plasma-based deposition methods are suitable for growing high quality crystalline chalcogenides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا